1
|
Seravalli E, Bosman ME, Han C, Losert C, Pazos M, Engström PE, Engellau J, Fulcheri CPL, Zucchetti C, Saldi S, Ferrer C, Ocanto A, Hiniker SM, Clark CH, Hussein M, Misson-Yates S, Kobyzeva DA, Loginova AA, Hoeben BAW. Technical recommendations for implementation of Volumetric Modulated Arc Therapy and Helical Tomotherapy Total Body Irradiation. Radiother Oncol 2024; 197:110366. [PMID: 38830537 DOI: 10.1016/j.radonc.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
As a component of myeloablative conditioning before allogeneic hematopoietic stem cell transplantation (HSCT), Total Body Irradiation (TBI) is employed in radiotherapy centers all over the world. In recent and coming years, many centers are changing their technical setup from a conventional TBI technique to multi-isocenter conformal arc therapy techniques such as Volumetric Modulated Arc Therapy (VMAT) or Helical Tomotherapy (HT). These techniques allow better homogeneity and control of the target prescription dose, and provide more freedom for individualized organ-at-risk sparing. The technical design of multi-isocenter/multi-plan conformal TBI is complex and should be developed carefully. A group of early adopters with conformal TBI experience using different treatment machines and treatment planning systems came together to develop technical recommendations and share experiences, in order to assist departments wishing to implement conformal TBI, and to provide ideas for standardization of practices.
Collapse
Affiliation(s)
- Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mirjam E Bosman
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Christoph Losert
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Per E Engström
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jacob Engellau
- Department of Radiation Oncology, Skåne University Hospital, Lund, Sweden
| | | | - Claudio Zucchetti
- Section of Medical Physics, Perugia General Hospital, Perugia, Italy
| | - Simonetta Saldi
- Section of Radiation Oncology, Perugia General Hospital, Perugia, Italy
| | - Carlos Ferrer
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, Madrid, Spain
| | - Abrahams Ocanto
- Department of Radiation Oncology, San Francisco de Asís University Hospital, GenesisCare, Madrid, Spain
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Catharine H Clark
- Radiotherapy Physics, National Radiotherapy Trials Quality Assurance Group (RTTQA), Mount Vernon Cancer Centre, Northwood, UK; Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; Medical Physics and Bioengineering Department, University College London, London, UK
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | - Sarah Misson-Yates
- Medical Physics Department, Guy's and St Thomas' Hospital, London, UK; UK School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; National Physical Laboratory, Metrology for Medical Physics Centre, London, UK
| | - Daria A Kobyzeva
- Deptartment of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna A Loginova
- Deptartment of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Bianca A W Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Chen Q, Rong Y, Burmeister JW, Chao EH, Corradini NA, Followill DS, Li XA, Liu A, Qi XS, Shi H, Smilowitz JB. AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148. Med Phys 2023; 50:e25-e52. [PMID: 36512742 DOI: 10.1002/mp.16150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.
Collapse
Affiliation(s)
- Quan Chen
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Hospitals, Phoenix, Arizona, USA
| | - Jay W Burmeister
- Karmanos Cancer Center, Gershenson R.O.C., Detroit, Michigan, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | - David S Followill
- Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Allen Li
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Liu
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - X Sharon Qi
- Radiation Oncology, UCLA School of Medicine, Los Angeles, California, USA
| | - Hairong Shi
- Radiation Oncology, Oklahoma Cancer Specialists and Research Institute, Tulsa, Oklahoma, USA
| | - Jennifer B Smilowitz
- Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Thiyagarajan R, Sharma DS, Kaushik S, Sawant M, Ganapathy K, Nambi Raj NA, Chilukuri S, Sundar SC, Patro KC, Manikandan A, Noufal MP, Sivaraman R, Easow J, Jalali R. Leaf open time sinogram (LOTS): a novel approach for patient specific quality assurance of total marrow irradiation. Radiat Oncol 2020; 15:236. [PMID: 33054792 PMCID: PMC7557063 DOI: 10.1186/s13014-020-01669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
There is no ideal detector-phantom combination to perform patient specific quality assurance (PSQA) for Total Marrow (TMI) and Lymphoid (TMLI) Irradiation plan. In this study, 3D dose reconstruction using mega voltage computed tomography detectors measured Leaf Open Time Sinogram (LOTS) was investigated for PSQA of TMI/TMLI patients in helical tomotherapy. The feasibility of this method was first validated for ten non-TMI/TMLI patients, by comparing reconstructed dose with (a) ion-chamber (IC) and helical detector array (ArcCheck) measurement and (b) planned dose distribution using 3Dγ analysis for 3%@3mm and dose to 98% (D98%) and 2% (D2%) of PTVs. Same comparison was extended for ten treatment plans from five TMI/TMLI patients. In all non-TMI/TMLI patients, reconstructed absolute dose was within ± 1.80% of planned and IC measurement. The planned dose distribution agreed with reconstructed and ArcCheck measured dose with mean (SD) 3Dγ of 98.70% (1.57%) and 2Dγ of 99.48% (0.81%). The deviation in D98% and D2% were within 1.71% and 4.10% respectively. In all 25 measurement locations from TMI/TMLI patients, planned and IC measured absolute dose agreed within ± 1.20%. Although sectorial fluence verification using ArcCHECK measurement for PTVs chest from the five upper body TMI/TMLI plans showed mean ± SD 2Dγ of 97.82% ± 1.27%, the reconstruction method resulted poor mean (SD) 3Dγ of 92.00% (± 5.83%), 64.80% (± 28.28%), 69.20% (± 30.46%), 60.80% (± 19.37%) and 73.2% (± 20.36%) for PTVs brain, chest, torso, limb and upper body respectively. The corresponding deviation in median D98% and D2% of all PTVs were < 3.80% and 9.50%. Re-optimization of all upper body TMI/TMLI plans with new pitch and modulation factor of 0.3 and 3 leads significant improvement with 3Dγ of 100% for all PTVs and median D98% and D2% < 1.6%. LOTS based PSQA for TMI/TMLI is accurate, robust and efficient. A field width, pitch and modulation factor of 5 cm, 0.3 and 3 for upper body TMI/TMLI plan is suggested for better dosimetric outcome and PSQA results.
Collapse
Affiliation(s)
- Rajesh Thiyagarajan
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India.,School of Advanced Sciences, VIT University, Vellore, 632014, India
| | | | - Suryakant Kaushik
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Mayur Sawant
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - K Ganapathy
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - N Arunai Nambi Raj
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, India
| | - Srinivas Chilukuri
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Sham C Sundar
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Kartikeswar Ch Patro
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Arjunan Manikandan
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - M P Noufal
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Rangasamy Sivaraman
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| | - Jose Easow
- Department of Haematology, Blood and Marrow Transplantation, Apollo Speciality Hospital, Teynampet, Chennai, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, 600096, Tamil Nadu, India
| |
Collapse
|
4
|
Posiewnik M, Piotrowski T. A review of cone-beam CT applications for adaptive radiotherapy of prostate cancer. Phys Med 2019; 59:13-21. [DOI: 10.1016/j.ejmp.2019.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/29/2019] [Accepted: 02/15/2019] [Indexed: 11/26/2022] Open
|
5
|
Schopfer M, Bochud FO, Bourhis J, Moeckli R. In air and in vivo measurement of the leaf open time in tomotherapy using the on-board detector pulse-by-pulse data. Med Phys 2019; 46:1963-1971. [PMID: 30810233 DOI: 10.1002/mp.13459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE We developed an algorithm to measure the leaf open times (LOT) from the on-board detector (OBD) pulse-by-pulse data in tomotherapy. We assessed the feasibility of measuring the LOTs in dynamic jaw mode and validated the algorithm on machine QA and clinical data. Knowledge of the actual LOTs is a basis toward calculating the delivered dose and performing efficient phantom-less delivery quality assurance (DQA) controls of the multileaf collimator (MLC). In tomotherapy, the quality of the delivered dose depends on the correct performance of the MLC, hence on the accuracy of the LOTs. MATERIALS AND METHODS In the detector signal, the period of time during which a leaf is open corresponds to a high intensity region. The algorithm described here locally normalizes the detector signal and measures the FWHM of the high intensity regions. The Daily QA module of the TomoTherapy Quality Assurance (TQA) tool measures LOT errors. The Daily QA detector data were collected during 9 days on two tomotherapy units. The errors yielded by the method were compared to these reported by the Daily QA module. In addition, clinical data were acquired on the two units (25 plans in total), in air without attenuation material in the beam path and in vivo during a treatment fraction. The study included plans with fields of all existing sizes (1.05, 2.51, 5.05 cm). The collimator jaws were in dynamic mode (TomoEDGETM ). The feasibility of measuring the LOTs was assessed with respect to the jaw aperture. RESULTS The mean discrepancy between LOTs measured by the algorithm and those measured by TQA was of 0 ms, with a standard deviation of 0.3 ms. The LOT measured by the method had thus an uncertainty of 1 ms with a confidence level of 99%. In 5.05 cm dynamic jaw procedures, the detector is in the beam umbra at the beginning and at the end of the delivery. In such procedures, the algorithm could not measure the LOTs at jaw apertures between 7 and maximum 12.4 mm. Otherwise, no measurement error due to the jaw movement was observed. No LOT measurement difference between air and in vivo data was observed either. CONCLUSION The method we propose is reliable. It can equivalently measure the LOTs from data acquired in air or in vivo. It handles fully the static procedures and the 2.51 cm dynamic procedures. It handles partially the 5.05 cm dynamic procedures. The limitation was evaluated with respect to the jaw aperture.
Collapse
Affiliation(s)
- Mathieu Schopfer
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - François O Bochud
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation-oncology department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Pisaturo O, Miéville F, Tercier PA, Allal AS. TransitQA - A new method for transit dosimetry of Tomotherapy patients. Med Phys 2017; 45:438-447. [DOI: 10.1002/mp.12672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/28/2017] [Accepted: 10/29/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
- Olivier Pisaturo
- Department of Radiation Oncology; HFR - Hôpital Fribourgeois; Chemin des Pensionnats Fribourg Switzerland
| | - Frédéric Miéville
- Department of Radiation Oncology; HFR - Hôpital Fribourgeois; Chemin des Pensionnats Fribourg Switzerland
| | - Pierre-Alain Tercier
- Department of Radiation Oncology; HFR - Hôpital Fribourgeois; Chemin des Pensionnats Fribourg Switzerland
| | - Abdelkarim Said Allal
- Department of Radiation Oncology; HFR - Hôpital Fribourgeois; Chemin des Pensionnats Fribourg Switzerland
| |
Collapse
|
7
|
Tercier P, Pisaturo O, Miéville F, Allal A. 48. Tomotherapy: From AirQA to TransitQA. Phys Med 2017. [DOI: 10.1016/j.ejmp.2017.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
8
|
Deshpande S, Xing A, Metcalfe P, Holloway L, Vial P, Geurts M. Clinical implementation of an exit detector-based dose reconstruction tool for helical tomotherapy delivery quality assurance. Med Phys 2017; 44:5457-5466. [PMID: 28737014 DOI: 10.1002/mp.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to validate the accuracy of an exit detector-based dose reconstruction tool for helical tomotherapy (HT) delivery quality assurance (DQA). METHODS AND MATERIAL Exit detector-based DQA tool was developed for patient-specific HT treatment verification. The tool performs a dose reconstruction on the planning image using the sinogram measured by the HT exit detector with no objects in the beam (i.e., static couch), and compares the reconstructed dose to the planned dose. Vendor supplied (three "TomoPhant") plans with a cylindrical solid water ("cheese") phantom were used for validation. Each "TomoPhant" plan was modified with intentional multileaf collimator leaf open time (MLC LOT) errors to assess the sensitivity and robustness of this tool. Four scenarios were tested; leaf 32 was "stuck open," leaf 42 was "stuck open," random leaf LOT was closed first by mean values of 2% and then 4%. A static couch DQA procedure was then run five times (once with the unmodified sinogram and four times with modified sinograms) for each of the three "TomoPhant" treatment plans. First, the original optimized delivery plan was compared with the original machine agnostic delivery plan, then the original optimized plans with a known modification applied (intentional MLC LOT error) were compared to the corresponding error plan exit detector measurements. An absolute dose comparison between calculated and ion chamber (A1SL, Standard Imaging, Inc., WI, USA) measured dose was performed for the unmodified "TomoPhant" plans. A 3D gamma evaluation (2%/2 mm global) was performed by comparing the planned dose ("original planned dose" for unmodified plans and "adjusted planned dose" for each intentional error) to exit detector-reconstructed dose for all three "Tomophant" plans. Finally, DQA for 119 clinical (treatment length <25 cm) and three cranio-spinal irradiation (CSI) plans were measured with both the ArcCHECK phantom (Sun Nuclear Corp., Melbourne, FL, USA) and the exit detector DQA tool to assess the time required for DQA and similarity between two methods. RESULTS The measured ion chamber dose agreed to within 1.5% of the reconstructed dose computed by the exit detector DQA tool on a cheese phantom for all unmodified "Tomophant" plans. Excellent agreement in gamma pass rate (>95%) was observed between the planned and reconstructed dose for all "Tomophant" plans considered using the tool. The gamma pass rate from 119 clinical plan DQA measurements was 94.9% ± 1.5% and 91.9% ± 4.37% for the exit detector DQA tool and ArcCHECK phantom measurements (P = 0.81), respectively. For the clinical plans (treatment length <25 cm), the average time required to perform DQA was 24.7 ± 3.5 and 39.5 ± 4.5 min using the exit detector QA tool and ArcCHECK phantom, respectively, whereas the average time required for the 3 CSI treatments was 35 ± 3.5 and 90 ± 5.2 min, respectively. CONCLUSION The exit detector tool has been demonstrated to be faster for performing the DQA with equivalent sensitivity for detecting MLC LOT errors relative to a conventional phantom-based QA method. In addition, comprehensive MLC performance evaluation and features of reconstructed dose provide additional insight into understanding DQA failures and the clinical relevance of DQA results.
Collapse
Affiliation(s)
- Shrikant Deshpande
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aitang Xing
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia
| | - Peter Metcalfe
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia.,South West Sydney Clinical School, School of Medicine, University of NSW, Sydney, Australia
| | - Philip Vial
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW 2170, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Geurts
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|