1
|
Huang Y, Thielemans K, Price G, McClelland JR. Surrogate-driven respiratory motion model for projection-resolved motion estimation and motion compensated cone-beam CT reconstruction from unsorted projection data. Phys Med Biol 2024; 69:025020. [PMID: 38091611 PMCID: PMC10791594 DOI: 10.1088/1361-6560/ad1546] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Objective.As the most common solution to motion artefact for cone-beam CT (CBCT) in radiotherapy, 4DCBCT suffers from long acquisition time and phase sorting error. This issue could be addressed if the motion at each projection could be known, which is a severely ill-posed problem. This study aims to obtain the motion at each time point and motion-free image simultaneously from unsorted projection data of a standard 3DCBCT scan.Approach.Respiration surrogate signals were extracted by the Intensity Analysis method. A general framework was then deployed to fit a surrogate-driven motion model that characterized the relation between the motion and surrogate signals at each time point. Motion model fitting and motion compensated reconstruction were alternatively and iteratively performed. Stochastic subset gradient based method was used to significantly reduce the computation time. The performance of our method was comprehensively evaluated through digital phantom simulation and also validated on clinical scans from six patients.Results.For digital phantom experiments, motion models fitted with ground-truth or extracted surrogate signals both achieved a much lower motion estimation error and higher image quality, compared with non motion-compensated results.For the public SPARE Challenge datasets, more clear lung tissues and less blurry diaphragm could be seen in the motion compensated reconstruction, comparable to the benchmark 4DCBCT images but with a higher temporal resolution. Similar results were observed for two real clinical 3DCBCT scans.Significance.The motion compensated reconstructions and motion models produced by our method will have direct clinical benefit by providing more accurate estimates of the delivered dose and ultimately facilitating more accurate radiotherapy treatments for lung cancer patients.
Collapse
Affiliation(s)
- Yuliang Huang
- Centre for Medical Image Computing, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Kris Thielemans
- Centre for Medical Image Computing, University College London, London, United Kingdom
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Gareth Price
- Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jamie R McClelland
- Centre for Medical Image Computing, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| |
Collapse
|
2
|
Li T, Xie Z, Qi W, Asma E, Qi J. Unsupervised deep learning framework for data-driven gating in positron emission tomography. Med Phys 2023; 50:6047-6059. [PMID: 37538038 PMCID: PMC10592231 DOI: 10.1002/mp.16642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Physiological motion, such as respiratory motion, has become a limiting factor in the spatial resolution of positron emission tomography (PET) imaging as the resolution of PET detectors continue to improve. Motion-induced misregistration between PET and CT images can also cause attenuation correction artifacts. Respiratory gating can be used to freeze the motion and to reduce motion induced artifacts. PURPOSE In this study, we propose a robust data-driven approach using an unsupervised deep clustering network that employs an autoencoder (AE) to extract latent features for respiratory gating. METHODS We first divide list-mode PET data into short-time frames. The short-time frame images are reconstructed without attenuation, scatter, or randoms correction to avoid attenuation mismatch artifacts and to reduce image reconstruction time. The deep AE is then trained using reconstructed short-time frame images to extract latent features for respiratory gating. No additional data are required for the AE training. K-means clustering is subsequently used to perform respiratory gating based on the latent features extracted by the deep AE. The effectiveness of our proposed Deep Clustering method was evaluated using physical phantom and real patient datasets. The performance was compared against phase gating based on an external signal (External) and image based principal component analysis (PCA) with K-means clustering (Image PCA). RESULTS The proposed method produced gated images with higher contrast and sharper myocardium boundaries than those obtained using the External gating method and Image PCA. Quantitatively, the gated images generated by the proposed Deep Clustering method showed larger center of mass (COM) displacement and higher lesion contrast than those obtained using the other two methods. CONCLUSIONS The effectiveness of our proposed method was validated using physical phantom and real patient data. The results showed our proposed framework could provide superior gating than the conventional External method and Image PCA.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Biomedical Engineering, University of California - Davis, Davis, CA 95616, USA
| | - Zhaoheng Xie
- Department of Biomedical Engineering, University of California - Davis, Davis, CA 95616, USA
| | - Wenyuan Qi
- Canon Medical Research USA, Inc., Vernon Hills, IL 60061, USA
| | - Evren Asma
- Canon Medical Research USA, Inc., Vernon Hills, IL 60061, USA
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California - Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Huang X, Zheng J, Ma Y, Hou M, Wang X. Analysis of emerging trends and hot spots in respiratory biomechanics from 2003 to 2022 based on CiteSpace. Front Physiol 2023; 14:1190155. [PMID: 37546534 PMCID: PMC10397404 DOI: 10.3389/fphys.2023.1190155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: With the global prevalence of coronavirus disease 2019 (COVID-19), an increasing number of people are experiencing respiratory discomfort. Respiratory biomechanics can monitor breathing patterns and respiratory movements and it is easier to prevent, diagnose, treat or rehabilitate. However, there is still a lack of global knowledge structure in the field of respiratory biomechanics. With the help of CiteSpace software, we aim to help researchers identify potential collaborators and collaborating institutions, hotspots and research frontiers in respiratory biomechanics. Methods: Articles on respiratory biomechanics from 2003 to 2022 were retrieved from the Web of Science Core Collection by using a specific strategy, resulting a total of 2,850 publications. We used CiteSpace 6.1.R6 to analyze the year of publication, journal/journals cited, country, institution, author/authors cited, references, keywords and research trends. Co-citation maps were created to visually observe research hot spots and knowledge structures. Results and discussion: The number of annual publications gradually increased over the past 20 years. Medical Physics published the most articles and had the most citations in this study. The United States was the most influential country, with the highest number and centrality of publications. The most productive and influential institution was Harvard University in the United States. Keall PJ was the most productive author and MCCLELLAND JR was the most cited authors The article by Keall PJ (2006) article (cocitation counts: 55) and the article by McClelland JR (2013) were the most representative and symbolic references, with the highest cocitation number and centrality, respectively. The top keywords were "radiotherapy", "volume", and "ventilation". The top Frontier keywords were "organ motion," "deep inspiration," and "deep learning". The keywords were clustered to form seven labels. Currently, the main area of research in respiratory biomechanics is respiratory motion related to imaging techniques. Future research may focus on respiratory assistance techniques and respiratory detection techniques. At the same time, in the future, we will pay attention to personalized medicine and precision medicine, so that people can monitor their health status anytime and anywhere.
Collapse
Affiliation(s)
- Xiaofei Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiaqi Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ye Ma
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, China
| | - Meijin Hou
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, China
| | - Xiangbin Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
4
|
Guo X, Zhou B, Pigg D, Spottiswoode B, Casey ME, Liu C, Dvornek NC. Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network. Med Image Anal 2022; 80:102524. [PMID: 35797734 PMCID: PMC10923189 DOI: 10.1016/j.media.2022.102524] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
Subject motion in whole-body dynamic PET introduces inter-frame mismatch and seriously impacts parametric imaging. Traditional non-rigid registration methods are generally computationally intense and time-consuming. Deep learning approaches are promising in achieving high accuracy with fast speed, but have yet been investigated with consideration for tracer distribution changes or in the whole-body scope. In this work, we developed an unsupervised automatic deep learning-based framework to correct inter-frame body motion. The motion estimation network is a convolutional neural network with a combined convolutional long short-term memory layer, fully utilizing dynamic temporal features and spatial information. Our dataset contains 27 subjects each under a 90-min FDG whole-body dynamic PET scan. Evaluating performance in motion simulation studies and a 9-fold cross-validation on the human subject dataset, compared with both traditional and deep learning baselines, we demonstrated that the proposed network achieved the lowest motion prediction error, obtained superior performance in enhanced qualitative and quantitative spatial alignment between parametric Ki and Vb images, and significantly reduced parametric fitting error. We also showed the potential of the proposed motion correction method for impacting downstream analysis of the estimated parametric images, improving the ability to distinguish malignant from benign hypermetabolic regions of interest. Once trained, the motion estimation inference time of our proposed network was around 460 times faster than the conventional registration baseline, showing its potential to be easily applied in clinical settings.
Collapse
Affiliation(s)
- Xueqi Guo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Bo Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - David Pigg
- Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA
| | | | - Michael E Casey
- Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA
| | - Chi Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA.
| | - Nicha C Dvornek
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
5
|
Grootjans W, Rietbergen DDD, van Velden FHP. Added Value of Respiratory Gating in Positron Emission Tomography for the Clinical Management of Lung Cancer Patients. Semin Nucl Med 2022; 52:745-758. [DOI: 10.1053/j.semnuclmed.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022]
|
6
|
Lamare F, Bousse A, Thielemans K, Liu C, Merlin T, Fayad H, Visvikis D. PET respiratory motion correction: quo vadis? Phys Med Biol 2021; 67. [PMID: 34915465 DOI: 10.1088/1361-6560/ac43fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) respiratory motion correction has been a subject of great interest for the last twenty years, prompted mainly by the development of multimodality imaging devices such as PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction involves a number of steps including acquisition synchronization, motion estimation and finally motion correction. The synchronization steps include the use of different external device systems or data driven approaches which have been gaining ground over the last few years. Patient specific or generic motion models using the respiratory synchronized datasets can be subsequently derived and used for correction either in the image space or within the image reconstruction process. Similar overall approaches can be considered and have been proposed for both PET/CT and PET/MRI devices. Certain variations in the case of PET/MRI include the use of MRI specific sequences for the registration of respiratory motion information. The proposed review includes a comprehensive coverage of all these areas of development in field of PET respiratory motion for different multimodality imaging devices and approaches in terms of synchronization, estimation and subsequent motion correction. Finally, a section on perspectives including the potential clinical usage of these approaches is included.
Collapse
Affiliation(s)
- Frederic Lamare
- Nuclear Medicine Department, University Hospital Centre Bordeaux Hospital Group South, ., Bordeaux, Nouvelle-Aquitaine, 33604, FRANCE
| | - Alexandre Bousse
- LaTIM, INSERM UMR1101, Université de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Kris Thielemans
- University College London Institute of Nuclear Medicine, UCL Hospital, Tower 5, 235 Euston Road, London, NW1 2BU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chi Liu
- Department of Diagnostic Radiology, Yale University School of Medicine Department of Radiology and Biomedical Imaging, PO Box 208048, 801 Howard Avenue, New Haven, Connecticut, 06520-8042, UNITED STATES
| | - Thibaut Merlin
- LaTIM, INSERM UMR1101, Universite de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Hadi Fayad
- Weill Cornell Medicine - Qatar, ., Doha, ., QATAR
| | - Dimitris Visvikis
- LaTIM, UMR1101, Universite de Bretagne Occidentale, INSERM, Brest, Bretagne, 29285, FRANCE
| |
Collapse
|
7
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200207. [PMID: 34218675 PMCID: PMC8255946 DOI: 10.1098/rsta.2020.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Irene Polycarpou
- Department of Health Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charalampos Tsoumpas
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Imaging Science Department, University of Leeds, West Yorkshire, UK
- Invicro, London, UK
| |
Collapse
|
8
|
Brown R, Kolbitsch C, Delplancke C, Papoutsellis E, Mayer J, Ovtchinnikov E, Pasca E, Neji R, da Costa-Luis C, Gillman AG, Ehrhardt MJ, McClelland JR, Eiben B, Thielemans K. Motion estimation and correction for simultaneous PET/MR using SIRF and CIL. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200208. [PMID: 34218674 DOI: 10.1098/rsta.2020.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 05/10/2023]
Abstract
SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Richard Brown
- Institute of Nuclear Medicine, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Christoph Kolbitsch
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | - Evangelos Papoutsellis
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
- Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Evgueni Ovtchinnikov
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Edoardo Pasca
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare, Frimley, UK
| | - Casper da Costa-Luis
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Ashley G Gillman
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Townsville, Australia
| | - Matthias J Ehrhardt
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Institute for Mathematical Innovation, University of Bath, UK
| | - Jamie R McClelland
- Centre for Medical Image Computing, University College London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Bjoern Eiben
- Centre for Medical Image Computing, University College London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
9
|
Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, Hermann K, Badawi RD, Cherry SR, Bradley KM, McGowan DR. New PET technologies - embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging 2021; 48:2711-2726. [PMID: 34081153 PMCID: PMC8263417 DOI: 10.1007/s00259-021-05390-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Aide
- Nuclear medicine Department, University Hospital, Caen, France.
- INSERM ANTICIPE, Normandie University, Caen, France.
| | - Charline Lasnon
- INSERM ANTICIPE, Normandie University, Caen, France
- François Baclesse Cancer Centre, Caen, France
| | - Adam Kesner
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Craig S Levin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Irene Buvat
- Institut Curie, Université PLS, Inserm, U1288 LITO, Orsay, France
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, 94305, USA
| | - Ken Hermann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Ramsey D Badawi
- Departments of Radiology and Biomedical Engineering, University of California, Davis, CA, USA
| | - Simon R Cherry
- Departments of Radiology and Biomedical Engineering, University of California, Davis, CA, USA
| | - Kevin M Bradley
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, Cardiff, UK
| | - Daniel R McGowan
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS FT, Oxford, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Kyme AZ, Fulton RR. Motion estimation and correction in SPECT, PET and CT. Phys Med Biol 2021; 66. [PMID: 34102630 DOI: 10.1088/1361-6560/ac093b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 11/11/2022]
Abstract
Patient motion impacts single photon emission computed tomography (SPECT), positron emission tomography (PET) and X-ray computed tomography (CT) by giving rise to projection data inconsistencies that can manifest as reconstruction artifacts, thereby degrading image quality and compromising accurate image interpretation and quantification. Methods to estimate and correct for patient motion in SPECT, PET and CT have attracted considerable research effort over several decades. The aims of this effort have been two-fold: to estimate relevant motion fields characterizing the various forms of voluntary and involuntary motion; and to apply these motion fields within a modified reconstruction framework to obtain motion-corrected images. The aims of this review are to outline the motion problem in medical imaging and to critically review published methods for estimating and correcting for the relevant motion fields in clinical and preclinical SPECT, PET and CT. Despite many similarities in how motion is handled between these modalities, utility and applications vary based on differences in temporal and spatial resolution. Technical feasibility has been demonstrated in each modality for both rigid and non-rigid motion, but clinical feasibility remains an important target. There is considerable scope for further developments in motion estimation and correction, and particularly in data-driven methods that will aid clinical utility. State-of-the-art machine learning methods may have a unique role to play in this context.
Collapse
Affiliation(s)
- Andre Z Kyme
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| | - Roger R Fulton
- Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| |
Collapse
|
11
|
Tsai YJ, Bousse A, Arridge S, Stearns CW, Hutton BF, Thielemans K. Penalized PET/CT Reconstruction Algorithms With Automatic Realignment for Anatomical Priors. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3025540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Tran EH, Eiben B, Wetscherek A, Oelfke U, Meedt G, Hawkes DJ, McClelland JR. Evaluation of MRI-derived surrogate signals to model respiratory motion. Biomed Phys Eng Express 2020; 6:045015. [PMID: 33194224 PMCID: PMC7655234 DOI: 10.1088/2057-1976/ab944c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022]
Abstract
An MR-Linac can provide motion information of tumour and organs-at-risk before, during, and after beam delivery. However, MR imaging cannot provide real-time high-quality volumetric images which capture breath-to-breath variability of respiratory motion. Surrogate-driven motion models relate the motion of the internal anatomy to surrogate signals, thus can estimate the 3D internal motion from these signals. Internal surrogate signals based on patient anatomy can be extracted from 2D cine-MR images, which can be acquired on an MR-Linac during treatment, to build and drive motion models. In this paper we investigate different MRI-derived surrogate signals, including signals generated by applying principal component analysis to the image intensities, or control point displacements derived from deformable registration of the 2D cine-MR images. We assessed the suitability of the signals to build models that can estimate the motion of the internal anatomy, including sliding motion and breath-to-breath variability. We quantitatively evaluated the models by estimating the 2D motion in sagittal and coronal slices of 8 lung cancer patients, and comparing them to motion measurements obtained from image registration. For sagittal slices, using the first and second principal components on the control point displacements as surrogate signals resulted in the highest model accuracy, with a mean error over patients around 0.80 mm which was lower than the in-plane resolution. For coronal slices, all investigated signals except the skin signal produced mean errors over patients around 1 mm. These results demonstrate that surrogate signals derived from 2D cine-MR images, including those generated by applying principal component analysis to the image intensities or control point displacements, can accurately model the motion of the internal anatomy within a single sagittal or coronal slice. This implies the signals should also be suitable for modelling the 3D respiratory motion of the internal anatomy.
Collapse
Affiliation(s)
- Elena H Tran
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Björn Eiben
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Gustav Meedt
- Elekta, Medical Intelligence Medizintechnik GmbH, Schwabmünchen, Germany
| | - David J Hawkes
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
13
|
Øen SK, Aasheim LB, Eikenes L, Karlberg AM. Image quality and detectability in Siemens Biograph PET/MRI and PET/CT systems-a phantom study. EJNMMI Phys 2019; 6:16. [PMID: 31385052 PMCID: PMC6682841 DOI: 10.1186/s40658-019-0251-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The technology of modern positron emission tomography (PET) systems continuously improving, and with it the possibility to detect smaller lesions. Since first introduced in 2010, the number of hybrid PET/magnetic resonance imaging (MRI) systems worldwide is constantly increasing. It is therefore important to assess and compare the image quality, in terms of detectability, between the PET/MRI and the well-established PET/computed tomography (CT) systems. For this purpose, a PET image quality phantom (Esser) with hot spheres, ranging from 4 to 20 mm in diameter, was prepared with fluorodeoxyglucose and sphere-to-background activity concentrations of 8:1 and 4:1, to mimic clinical conditions. The phantom was scanned on a PET/MRI and a PET/CT system for both concentrations to obtain contrast recovery coefficients (CRCs) and contrast-to-noise ratios (CNRs), for a range of reconstruction settings. The detectability of the spheres was scored by three human observers for both systems and concentrations and all reconstructions. Furthermore, the impact of acquisition time on CNR and observer detectability was investigated. RESULTS Reconstructions applying point-spread-function modeling (and time-of-flight for the PET/CT) yielded the highest CRC and CNR in general, and PET/CT demonstrated slightly higher values than PET/MRI for most sphere sizes. CNR was dependent on reconstruction settings and was maximized for 2 iterations, a pixel size of less than 2 mm and a 4 mm Gaussian filter. Acquisition times of 97 s (PET/MRI) and 150 s (PET/CT) resulted in similar total net true counts. For these acquisition times, the smallest detected spheres by the human observers in the 8:1 activity concentration was the 6-mm sphere with PET/MRI (CNR = 5.6) and the 5-mm sphere with PET/CT (CNR = 5.5). With an acquisition time of 180 s, the 5-mm sphere was also detected with PET/MRI (CNR = 5.8). The 8-mm sphere was the smallest detected sphere in the 4:1 activity concentration for both systems. CONCLUSION In this experimental study, similar detectability was found for the PET/MRI and the PET/CT, although for an increased acquisition time for the PET/MRI.
Collapse
Affiliation(s)
- Silje Kjærnes Øen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postbox 8905, N-7491, Trondheim, Norway.
| | - Lars Birger Aasheim
- Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Olav Kyrres gt 17, N-7006, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postbox 8905, N-7491, Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postbox 8905, N-7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Olav Kyrres gt 17, N-7006, Trondheim, Norway
| |
Collapse
|
14
|
Abstract
Cardiac PET provides high sensitivity and high negative predictive value in the diagnosis of coronary artery disease and cardiomyopathies. Cardiac, respiratory as well as bulk patient motion have detrimental effects on thoracic PET imaging, in particular on cardiovascular PET imaging where the motion can affect the PET images quantitatively as well as qualitatively. Gating can ameliorate the unfavorable impact of motion additionally enabling evaluation of left ventricular systolic function. In this article, the authors review the recent advances in gating approaches and highlight the advances in data-driven approaches, which hold promise in motion detection without the need for complex hardware setup.
Collapse
Affiliation(s)
| | - Jacek Kwiecinski
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Piotr J Slomka
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
15
|
Kolbitsch C, Neji R, Fenchel M, Schuh A, Mallia A, Marsden P, Schaeffter T. Joint cardiac and respiratory motion estimation for motion-corrected cardiac PET-MR. ACTA ACUST UNITED AC 2018; 64:015007. [DOI: 10.1088/1361-6560/aaf246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Yang J, Liu J, Wiesinger F, Menini A, Zhu X, Hope TA, Seo Y, Larson PEZ. Developing an efficient phase-matched attenuation correction method for quiescent period PET in abdominal PET/MRI. Phys Med Biol 2018; 63:185002. [PMID: 30106008 DOI: 10.1088/1361-6560/aada26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Respiratory motion causes misalignments between positron emission tomography (PET) and magnetic resonance (MR)-derived attenuation maps (µ-maps) in addition to artifacts on both PET and MR images in simultaneous PET/MRI for organs such as liver that can experience motion of several centimeters. To address this problem, we developed an efficient MR-based attenuation correction (MRAC) method to generate phase-matched µ-maps for quiescent period PET (PETQ) in abdominal PET/MRI. MRAC data was acquired with CIRcular Cartesian UnderSampling (CIRCUS) sampling during 100 s in free-breathing as an accelerated data acquisition strategy for phase-matched MRAC (MRACPM-CIRCUS). For comparison, MRAC data with raster (Default) k-space sampling was also acquired during 100 s in free-breathing (MRACPM-Default), and used to evaluate MRACPM-CIRCUS as well as un-matched MRAC (MRACUM) that was un-gated. We purposefully oversampled the MRACPM data to ensure we had enough information to capture all respiratory phases to make this comparison as robust as possible. The proposed MRACPM-CIRCUS was evaluated in 17 patients with 68Ga-DOTA-TOC PET/MRI exams, suspected of having neuroendocrine tumors or liver metastases. Effects of CIRCUS sampling for accelerating a data acquisition were evaluated by simulating the data acquisition time retrospectively in increments of 5 s. Effects of MRACPM-CIRCUS on PETQ were evaluated using uptake differences in the liver lesions (n = 35), compared to PETQ with MRACPM-Default and MRACUM. A Wilcoxon signed-rank test was performed to compare lesion uptakes between the MRAC methods. MRACPM-CIRCUS showed higher image quality compared to MRACPM-Default for the same acquisition times, demonstrating that a data acquisition time of 30 s was reasonable to achieve phase-matched µ-maps. Lesion update differences between MRACPM-CIRCUS (30 s) versus MRACPM-Default (reference, 100 s) were 0.1% ± 1.4% (range of -2.7% to 3.2%) and not significant (P > .05); while, the differences between MRACUM versus MRACPM-Default were 0.6% ± 11.4% with a large variation (range of -37% to 20%) and significant (P < .05). In conclusion, we demonstrated that a data acquisition of 30 s achieved phase-matched µ-maps when using specialized CIRCUS data sampling and phase-matched µ-maps improved PETQ quantification significantly.
Collapse
Affiliation(s)
- Jaewon Yang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States of America. UCSF Physics Research Laboratory, 185 Berry Street, Suite 350, San Francisco, CA 94143-0946, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kolbitsch C, Neji R, Fenchel M, Mallia A, Marsden P, Schaeffter T. Respiratory-resolved MR-based attenuation correction for motion-compensated cardiac PET-MR. ACTA ACUST UNITED AC 2018; 63:135008. [DOI: 10.1088/1361-6560/aaca15] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Manber R, Thielemans K, Hutton BF, Wan S, Fraioli F, Barnes A, Ourselin S, Arridge S, Atkinson D. Clinical Impact of Respiratory Motion Correction in Simultaneous PET/MR, Using a Joint PET/MR Predictive Motion Model. J Nucl Med 2018. [PMID: 29523630 PMCID: PMC6126439 DOI: 10.2967/jnumed.117.191460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In PET imaging, patient motion due to respiration can lead to artifacts and blurring, in addition to quantification errors. The integration of PET imaging with MRI in PET/MRI scanners provides spatially aligned complementary clinical information and allows the use of high-contrast, high-spatial-resolution MR images to monitor and correct motion-corrupted PET data. On a patient cohort, we tested the ability of our joint PET/MRI-based predictive motion model to correct respiratory motion in PET and show it can improve lesion detectability and quantitation and reduce image artifacts. Methods: Using multiple tracers and multiple organ locations, we applied our motion correction method to 42 clinical PET/MRI patient datasets containing 162 PET-avid lesions. Quantitative changes were calculated using SUV changes in avid lesions. Lesion detectability changes were explored with a study in which 2 radiologists identified lesions in uncorrected and motion-corrected images and provided confidence scores. Results: Mean increases of 12.4% for SUVpeak and 17.6% for SUVmax after motion correction were found. In the detectability study, confidence scores for detecting avid lesions increased, with a rise in mean score from 2.67 to 3.01 (of 4) after motion correction and a rise in detection rate from 74% to 84%. Of 162 confirmed lesions, 49 showed an increase in all 3 metrics—SUVpeak, SUVmax, and combined reader confidence score—whereas only 2 lesions showed a decrease. We also present clinical case studies demonstrating the effect that respiratory motion correction of PET data can have on patient management, with increased numbers of detected lesions, improved lesion sharpness and localization, and reduced attenuation-based artifacts. Conclusion: We demonstrated significant improvements in quantification and detection of PET-avid lesions, with specific case study examples showing where motion correction has the potential to affect diagnosis or patient care.
Collapse
Affiliation(s)
- Richard Manber
- Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Kris Thielemans
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom
| | - Brian F Hutton
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; and
| | - Simon Wan
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom
| | - Francesco Fraioli
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom
| | - Anna Barnes
- Institute of Nuclear Medicine, UCL and UCL Hospitals, London, United Kingdom
| | - Sébastien Ourselin
- Centre for Medical Imaging Computing, Faculty of Engineering, University College London, London, United Kingdom
| | - Simon Arridge
- Centre for Medical Imaging Computing, Faculty of Engineering, University College London, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
19
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:703-711. [PMID: 29533892 DOI: 10.1109/tmi.2017.2768130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, 18F-FDG and 68Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions.
Collapse
|
20
|
Chan C, Onofrey J, Jian Y, Germino M, Papademetris X, Carson RE, Liu C. Non-Rigid Event-by-Event Continuous Respiratory Motion Compensated List-Mode Reconstruction for PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:504-515. [PMID: 29028189 PMCID: PMC7304524 DOI: 10.1109/tmi.2017.2761756] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Respiratory motion during positron emission tomography (PET)/computed tomography (CT) imaging can cause significant image blurring and underestimation of tracer concentration for both static and dynamic studies. In this paper, with the aim to eliminate both intra-cycle and inter-cycle motions, and apply to dynamic imaging, we developed a non-rigid event-by-event (NR-EBE) respiratory motion-compensated list-mode reconstruction algorithm. The proposed method consists of two components: the first component estimates a continuous non-rigid motion field of the internal organs using the internal-external motion correlation. This continuous motion field is then incorporated into the second component, non-rigid MOLAR (NR-MOLAR) reconstruction algorithm to deform the system matrix to the reference location where the attenuation CT is acquired. The point spread function (PSF) and time-of-flight (TOF) kernels in NR-MOLAR are incorporated in the system matrix calculation, and therefore are also deformed according to motion. We first validated NR-MOLAR using a XCAT phantom with a simulated respiratory motion. NR-EBE motion-compensated image reconstruction using both the components was then validated on three human studies injected with 18F-FPDTBZ and one with 18F-fluorodeoxyglucose (FDG) tracers. The human results were compared with conventional non-rigid motion correction using discrete motion field (NR-discrete, one motion field per gate) and a previously proposed rigid EBE motion-compensated image reconstruction (R-EBE) that was designed to correct for rigid motion on a target lesion/organ. The XCAT results demonstrated that NR-MOLAR incorporating both PSF and TOF kernels effectively corrected for non-rigid motion. The 18F-FPDTBZ studies showed that NR-EBE out-performed NR-Discrete, and yielded comparable results with R-EBE on target organs while yielding superior image quality in other regions. The FDG study showed that NR-EBE clearly improved the visibility of multiple moving lesions in the liver where some of them could not be discerned in other reconstructions, in addition to improving quantification. These results show that NR-EBE motion-compensated image reconstruction appears to be a promising tool for lesion detection and quantification when imaging thoracic and abdominal regions using PET.
Collapse
|