1
|
Speck T. Steady inhomogeneous shear flows as mechanical phase transitions. Phys Rev E 2025; 111:015430. [PMID: 39972874 DOI: 10.1103/physreve.111.015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025]
Abstract
Inhomogeneous flows and shear banding are of interest for a range of applications but have been eluding a comprehensive theoretical understanding, mostly due to the lack of a framework comparable to equilibrium statistical mechanics. Here we revisit models of fluids that reach a stationary state obeying mechanical equilibrium. Starting from a nonlocal constitutive relation, we apply the idea of a "mechanical phase transition" and map the constitutive relation onto a dynamical system through an integrating factor. We illustrate this framework for two applications: shear banding in strongly thinning complex fluids and the coexistence of a solid with its sheared melt. Our results contribute to the growing body of work following a mechanical route to describe inhomogeneous systems away from thermal equilibrium.
Collapse
Affiliation(s)
- Thomas Speck
- University of Stuttgart, Institute for Theoretical Physics IV, Heisenbergstr. 3, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Divoux T, Agoritsas E, Aime S, Barentin C, Barrat JL, Benzi R, Berthier L, Bi D, Biroli G, Bonn D, Bourrianne P, Bouzid M, Del Gado E, Delanoë-Ayari H, Farain K, Fielding S, Fuchs M, van der Gucht J, Henkes S, Jalaal M, Joshi YM, Lemaître A, Leheny RL, Manneville S, Martens K, Poon WCK, Popović M, Procaccia I, Ramos L, Richards JA, Rogers S, Rossi S, Sbragaglia M, Tarjus G, Toschi F, Trappe V, Vermant J, Wyart M, Zamponi F, Zare D. Ductile-to-brittle transition and yielding in soft amorphous materials: perspectives and open questions. SOFT MATTER 2024; 20:6868-6888. [PMID: 39028363 DOI: 10.1039/d3sm01740k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.
Collapse
Affiliation(s)
- Thibaut Divoux
- ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France.
| | - Elisabeth Agoritsas
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Stefano Aime
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, Paris, France
| | - Catherine Barentin
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jean-Louis Barrat
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Roberto Benzi
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Daniel Bonn
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Philippe Bourrianne
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, France
| | - Mehdi Bouzid
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Emanuela Del Gado
- Georgetown University, Department of Physics, Institute for Soft Matter Synthesis and Metrology, Washington, DC, USA
| | - Hélène Delanoë-Ayari
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Kasra Farain
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Suzanne Fielding
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Silke Henkes
- Lorentz Institute, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maziyar Jalaal
- Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Anaël Lemaître
- Navier, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | - Wilson C K Poon
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str.38, 01187 Dresden, Germany
| | - Itamar Procaccia
- Dept. of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Sino-Europe Complex Science Center, School of Mathematics, North University of China, Shanxi, Taiyuan 030051, China
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - James A Richards
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saverio Rossi
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Mauro Sbragaglia
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Federico Toschi
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- CNR-IAC, Via dei Taurini 19, 00185 Rome, Italy
| | - Véronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg 1700, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, 8032 Zürich, Switzerland
| | - Matthieu Wyart
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Davoud Zare
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| |
Collapse
|
3
|
Geri M, Saint-Michel B, Divoux T, McKinley GH, Manneville S. Interplay between wall slip and shear banding in a thixotropic yield stress fluid. SOFT MATTER 2024; 20:5769-5780. [PMID: 38984407 DOI: 10.1039/d4sm00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We study the local dynamics of a thixotropic yield stress fluid that shows a pronounced non-monotonic flow curve. This mechanically unstable behavior is generally not observable from standard rheometry tests, resulting in a stress plateau that stems from the coexistence of a flowing band with an unyielded region below a critical shear rate c. Combining ultrasound velocimetry with standard rheometry, we discover an original shear-banding scenario in the decreasing branch of the flow curve of model paraffin gels, in which the velocity profile of the flowing band is set by the applied shear rate instead of c. As a consequence, the material slips at the walls with a velocity that shows a non-trivial dependence on the applied shear rate. To capture our observations, we propose a differential version of the so-called lever rule, describing the extent of the flowing band and the evolution of wall slip with shear rate. This phenomenological model holds down to very low shear rates, at which the dimension of the flowing band becomes comparable to the size of the individual wax particles that constitute the gel microstructure, leading to cooperative effects. Our approach provides a framework where constraints imposed in the classical shear-banding scenario can be relaxed, with wall slip acting as an additional degree of freedom.
Collapse
Affiliation(s)
- Michela Geri
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Thibaut Divoux
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| | - Gareth H McKinley
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
4
|
Malkin AY, Kulichikhin VG, Khashirova SY, Simonov-Emelyanov ID, Mityukov AV. Rheology of Highly Filled Polymer Compositions-Limits of Filling, Structure, and Transport Phenomena. Polymers (Basel) 2024; 16:442. [PMID: 38337331 PMCID: PMC10857539 DOI: 10.3390/polym16030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The current state of the rheology of various polymeric and other materials containing a high concentration of spherical solid filler is considered. The physics of the critical points on the concentration scale are discussed in detail. These points determine the features of the rheological behavior of the highly filled materials corresponding to transitions from a liquid to a yielding medium, elastic-plastic state, and finally to an elastic solid-like state of suspensions. Theoretical and experimental data are summarized, showing the limits of the most dense packing of solid particles, which is of key importance for applications and obtaining high-quality products. The results of model and fine structural studies of physical phenomena that occur when approaching the point of filling the volume, including the occurrence of instabilities, are considered. The occurrence of heterogeneity in the form of individual clusters is also described. These heterogeneous objects begin to move as a whole that leads to the appearance of discontinuities in the suspension volume or wall slip. Understanding these phenomena is a key for particle technology and multiphase processing.
Collapse
Affiliation(s)
- Alexander Ya. Malkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 29. Leninsky Prospect, 119991 Moscow, Russia; (V.G.K.); (A.V.M.)
| | - Valery G. Kulichikhin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 29. Leninsky Prospect, 119991 Moscow, Russia; (V.G.K.); (A.V.M.)
| | - Svetlana Yu. Khashirova
- Kh.M. Berbekov Kabardino-Balkarsky State University, Chernyshevsky Str. 273, 36000 Nal’chik, Russia;
| | - Igor D. Simonov-Emelyanov
- M.V. Lomonosov Institute of Fine Chemical Technology, Russian Technological University, 78. Vernadsky Avenue, 119454 Moscow, Russia;
| | - Anton V. Mityukov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 29. Leninsky Prospect, 119991 Moscow, Russia; (V.G.K.); (A.V.M.)
| |
Collapse
|
5
|
Vasisht VV, Goff ML, Martens K, Barrat JL. Permanent shear localization in dense disordered materials due to microscopic inertia. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:106. [PMID: 37917357 DOI: 10.1140/epje/s10189-023-00367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
In this work using computer simulations of 3D model of dense disordered solids we show, for the first time, the appearance of shear localization in the stationary flow under homogeneous driving conditions. To rationalize our simulation results we develop a continuum model, that couples the dynamics of the local flow to the evolution of a kinetic temperature field related to the local inertial dynamics. Our model predicts that the coupling of the flow field to this additional destabilizing field appears only as a necessary condition for shear localization, a minimum system size is necessary to accommodate the flow instability. Moreover we show that this size criterion resulting from our continuum description is in quantitative agreement with our particle-based simulation results.
Collapse
Affiliation(s)
- Vishwas V Vasisht
- Department of Physics, Indian Institute of Technology, Palakkad, 678623, India
| | - Magali Le Goff
- CNRS, LIPhy, University Grenoble Alpes, 38000, Grenoble, France
| | - Kirsten Martens
- CNRS, LIPhy, University Grenoble Alpes, 38000, Grenoble, France
| | | |
Collapse
|
6
|
Wittmer JP, Semenov AN, Baschnagel J. Correlations of tensor field components in isotropic systems with an application to stress correlations in elastic bodies. Phys Rev E 2023; 108:015002. [PMID: 37583199 DOI: 10.1103/physreve.108.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/28/2023] [Indexed: 08/17/2023]
Abstract
Correlation functions of components of second-order tensor fields in isotropic systems can be reduced to an isotropic fourth-order tensor field characterized by a few invariant correlation functions (ICFs). It is emphasized that components of this field depend in general on the coordinates of the field vector variable and thus on the orientation of the coordinate system. These angular dependencies are distinct from those of ordinary anisotropic systems. As a simple example of the procedure to obtain the ICFs we discuss correlations of time-averaged stresses in isotropic glasses where only one ICF in reciprocal space becomes a finite constant e for large sampling times and small wave vectors. It is shown that e is set by the typical size of the frozen-in stress components normal to the wave vectors, i.e., it is caused by the symmetry breaking of the stress for each independent configuration. Using the presented general mathematical formalism for isotropic tensor fields this finding explains in turn the observed long-range stress correlations in real space. Under additional but rather general assumptions e is shown to be given by a thermodynamic quantity, the equilibrium Young modulus E. We thus relate for certain isotropic amorphous bodies the existence of finite Young or shear moduli to the symmetry breaking of a stress component in reciprocal space.
Collapse
Affiliation(s)
- J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - A N Semenov
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| |
Collapse
|
7
|
Korchinski D, Rottler J. Dynamic phase diagram of plastically deformed amorphous solids at finite temperature. Phys Rev E 2022; 106:034103. [PMID: 36266895 DOI: 10.1103/physreve.106.034103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
The yielding transition that occurs in amorphous solids under athermal quasistatic deformation has been the subject of many theoretical and computational studies. Here, we extend this analysis to include thermal effects at finite shear rate, focusing on how temperature alters avalanches. We derive a nonequilibrium phase diagram capturing how temperature and strain rate effects compete, when avalanches overlap, and whether finite-size effects dominate over temperature effects. The predictions are tested through simulations of an elastoplastic model in two dimensions and in a mean-field approximation. We find a scaling for temperature-dependent softening in the low-strain rate regime when avalanches do not overlap, and a temperature-dependent Herschel-Bulkley exponent in the high-strain rate regime when avalanches do overlap.
Collapse
Affiliation(s)
- Daniel Korchinski
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - Jörg Rottler
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
8
|
Steffen D, Schneider L, Müller M, Rottler J. Molecular simulations and hydrodynamic theory of nonlocal shear stresscorrelations in supercooled fluids. J Chem Phys 2022; 157:064501. [DOI: 10.1063/5.0098265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A supercooled fluid close to the glass transition develops nonlocal shear stress correlations that anticipate the emergence of elasticity. We performed molecular dynamics simulations of a binary Lennard-Jones mixture at different temperatures and investigated the spatiotemporal autocorrelation function of the shear stressfor different wavevectors, q, from a locally measured and Fourier-transformed stress tensor. Anisotropic correlations are observed at non-zero wavevectors, exhibiting strongly damped oscillations with a characteristic frequency ω(q). A comparison with a recently developed hydrodynamic theory [Maier et al., Phys. Rev. Lett. 119, 265701 (2017)] shows a remarkably good quantitative agreement between the particle-based simulations and the theoretical predictions.
Collapse
Affiliation(s)
- David Steffen
- Georg-August-Universität Göttingen Institut für Theoretische Physik, Germany
| | - Ludwig Schneider
- Institute for Theoretical Physics, Georg-August-Universität Göttingen Fakultät für Physik, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg August University Gottingen Faculty of Physics, Germany
| | - Joerg Rottler
- Department of Physics and Astronomy, University of British Columbia, Canada
| |
Collapse
|
9
|
Dong J, Turci F, Jack RL, Faers M, Royall CP. Direct Imaging of Contacts and Forces in Colloidal Gels. J Chem Phys 2022; 156:214907. [DOI: 10.1063/5.0089276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloidal dispersions are prized as model systems to understand basic properties of materials, and are central to a wide range of industries from cosmetics to foods to agrichemicals. Among the key developments in using colloids to address challenges in condensed matter is to resolve the particle coordinates in 3D, allowing a level of analysis usually only possible in computer simulation. However in amorphous materials, relating mechanical properties, and failure in particular to microscopic structure remains problematic. Here we address this challenge by studying the contacts and the forces between particles, as well as their positions. To do so, we use a colloidal model system (an emulsion) in which the interparticle forces and local stress can be linked to the microscopic structure. We demonstrate the potential of our method to reveal insights into the failure mechanisms of soft amorphous solids by determining local stress in a colloidal gel. In particular, we identify "force chains" of load--bearing droplets, and local stress anisotropy, and investigate their connection with locally rigid packings of the droplets.
Collapse
Affiliation(s)
- Jun Dong
- University of Bristol, United Kingdom
| | | | - Robert L. Jack
- DAMTP, University of Cambridge Department of Applied Mathematics and Theoretical Physics, United Kingdom
| | | | | |
Collapse
|
10
|
Trulsson M. Directional shear jamming of frictionless ellipses. Phys Rev E 2021; 104:044614. [PMID: 34781452 DOI: 10.1103/physreve.104.044614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
In this work we study shear reversals of dense non-Brownian suspensions composed of cohesionless elliptical particles. By numerical simulations, we show that a new fragility appears for frictionless ellipses in the flowing states, where particles can flow indefinitely in one direction at applied shear stresses but shear jam in the other direction upon shear stress reversal. This new fragility, absent in the isotropic particle case, is linked to the directional order of the elongated particles at steady shear and its reorientation at shear stress reversal, which forces the suspensions to pass through a more disordered state with an increased number of contacts in which it might get arrested.
Collapse
Affiliation(s)
- Martin Trulsson
- Theoretical Chemistry, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
11
|
Benzi R, Divoux T, Barentin C, Manneville S, Sbragaglia M, Toschi F. Continuum modeling of shear startup in soft glassy materials. Phys Rev E 2021; 104:034612. [PMID: 34654204 DOI: 10.1103/physreve.104.034612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 11/07/2022]
Abstract
Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a critical stress σ_{y} such that YSFs are solid for stresses σ imposed below σ_{y}, whereas they flow like liquids for σ>σ_{y}. Under an applied shear rate γ[over ̇], the solid-to-liquid transition is associated with a complex spatiotemporal scenario that depends on the microscopic details of the system, on the boundary conditions, and on the system size. Still, the general phenomenology reported in the literature boils down to a simple sequence that can be divided into a short-time response characterized by the so-called "stress overshoot," followed by stress relaxation towards a steady state. Such relaxation can be either (1) long-lasting, which usually involves the growth of a shear band that can be only transient or that may persist at steady state or (2) abrupt, in which case the solid-to-liquid transition resembles the failure of a brittle material, involving avalanches. In the present paper, we use a continuum model based on a spatially resolved fluidity approach to rationalize the complete scenario associated with the shear-induced yielding of YSFs. A key feature of our model is to provide a scaling for the coordinates of the stress overshoot, i.e., stress σ_{M} and strain γ_{M} as a function of γ[over ̇], which shows good agreement with experimental and numerical data extracted from the literature. Moreover, our approach shows that the power-law scaling σ_{M}(γ[over ̇]) is intimately linked to the growth dynamics of a fluidized boundary layer in the vicinity of the moving boundary. Yet such scaling is independent of the fate of that layer, and of the long-term behavior of the YSF, i.e., whether the steady-state flow profile is homogeneous or shear-banded. Finally, when including the presence of "long-range" correlations, we show that our model displays a ductile to brittle transition, i.e., the stress overshoot reduces into a sharp stress drop associated with avalanches, which impacts the scaling σ_{M}(γ[over ̇]). This generalized model nicely captures subtle avalanche-like features of the transient shear banding dynamics reported in experiments. Our work offers a unified picture of shear-induced yielding in YSFs, whose complex spatiotemporal dynamics are deeply connected to nonlocal effects.
Collapse
Affiliation(s)
- Roberto Benzi
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Thibaut Divoux
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Catherine Barentin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Sébastien Manneville
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Mauro Sbragaglia
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Federico Toschi
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 9 5600 MB Eindhoven, Netherlands and CNR-IAC, Rome, Italy
| |
Collapse
|
12
|
Shrivastav GP, Kahl G. On the yielding of a point-defect-rich model crystal under shear: insights from molecular dynamics simulations. SOFT MATTER 2021; 17:8536-8552. [PMID: 34505613 PMCID: PMC8480408 DOI: 10.1039/d1sm00662b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In real crystals and at finite temperatures point defects are inevitable. Under shear their dynamics severely influence the mechanical properties of these crystals, giving rise to non-linear effects, such as ductility. In an effort to elucidate the complex behavior of crystals under plastic deformation it is crucial to explore and to understand the interplay between the timescale related to the equilibrium point-defect diffusion and the shear-induced timescale. Based on extensive non-equilibrium molecular dynamics simulations we present a detailed investigation on the yielding behavior of cluster crystals, an archetypical model for a defect-rich crystal: in such a system clusters of overlapping particles occupy the lattice sites of a regular (FCC) structure. In equilibrium particles diffuse via site-to-site hopping while maintaining the crystalline structure intact. We investigate these cluster crystals at a fixed density and at different temperatures where the system remains in the FCC structure: temperature allows us to vary the diffusion timescale appropriately. We then expose the crystal to shear, thereby choosing shear rates which cover timescales that are both higher and lower than the equilibrium diffusion timescales. We investigate the macroscopic and microscopic response of our cluster crystal to shear and find that the yielding scenario of such a system does not rely on the diffusion of the particles - it is rather related to the plastic deformation of the underlying crystalline structure. The local bond order parameters and the measurement of local angles between neighboring clusters confirm the cooperative movement of the clusters close to the yield point. Performing complementary, related simulations for an FCC crystal formed by harshly repulsive particles reveals similarities in the yielding behavior between both systems. Still we find that the diffusion of particles does influence characteristic features in the cluster crystal, such as a less prominent increase of order parameters close to the yield point. Our simulations provide for the first time an insight into the role of the diffusion of defects in the yielding behavior of a defect-rich crystal under shear. These observations will thus be helpful in the development of theories for the plastic deformation of defect-rich crystals.
Collapse
Affiliation(s)
- Gaurav P Shrivastav
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| | - Gerhard Kahl
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| |
Collapse
|
13
|
Smith KM, Hsiao LC. Migration and Morphology of Colloidal Gel Clusters in Cylindrical Channel Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10308-10318. [PMID: 34403581 DOI: 10.1021/acs.langmuir.1c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the cluster-level structural parameters of colloidal thermogelling nanoemulsions in channel flow as a function of attractive interactions and local shear stress. The spatiotemporal evolution of the gel microstructure is obtained by directly visualizing the dispersed phase near the edge of a cylindrical channel. We observe the flow of the nanoemulsion gels in a range of radial positions (r) and shear stresses between 70 and 220 Pa, finding that the r-dependent cluster sizes are due to a balance between shear forces that yield bonds and attractive interactions that rebuild the inter-colloid bonds. In addition, the largest clusters appear to be affected by confinement and accumulate toward the central axis of the channel, resulting in a volume fraction gradient. Cluster size and volume fraction variabilities are most prominent when the attractive interactions are the strongest. Specifically, a distinct transition from sparse, fluidized clusters near the walls to concentrated, large clusters toward the center is observed. These two structural states coincide with a velocity-based transition from higher shear rates near the walls to lower shear rates toward the center of the channel. We find a compounding effect where larger gel clusters, formed under strong attractions and low shear stresses, are susceptible to shear-induced migration that intensifies r-dependent heterogeneity and deviations in the flow behavior from predictive models.
Collapse
Affiliation(s)
- Kristine M Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
14
|
Royall CP, Faers MA, Fussell SL, Hallett JE. Real space analysis of colloidal gels: triumphs, challenges and future directions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:453002. [PMID: 34034239 DOI: 10.1088/1361-648x/ac04cb] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Colloidal gels constitute an important class of materials found in many contexts and with a wide range of applications. Yet as matter far from equilibrium, gels exhibit a variety of time-dependent behaviours, which can be perplexing, such as an increase in strength prior to catastrophic failure. Remarkably, such complex phenomena are faithfully captured by an extremely simple model-'sticky spheres'. Here we review progress in our understanding of colloidal gels made through the use of real space analysis and particle resolved studies. We consider the challenges of obtaining a suitable experimental system where the refractive index and density of the colloidal particles is matched to that of the solvent. We review work to obtain a particle-level mechanism for rigidity in gels and the evolution of our understanding of time-dependent behaviour, from early-time aggregation to ageing, before considering the response of colloidal gels to deformation and then move on to more complex systems of anisotropic particles and mixtures. Finally we note some more exotic materials with similar properties.
Collapse
Affiliation(s)
- C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
- School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, United Kingdom
| | - Malcolm A Faers
- Bayer AG, Crop Science Division, Formulation Technology, Alfred Nobel Str. 50, 40789 Monheim, Germany
| | - Sian L Fussell
- School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - James E Hallett
- Physical and Theoretical Chemistry Laboratory, South Parks Road, University of Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
15
|
Shin S, Kou Y, Dorfman KD, Cheng X. Dynamics of DNA-Bridged Dumbbells in Concentrated, Shear-Banding Polymer Solutions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seunghwan Shin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yangming Kou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Mandal S, Gans A, Nicolas M, Pouliquen O. Flows of cohesive granular media. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124901001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cohesive granular media have broad applications in industries. However, our understanding of their flow behavior is still limited compared to dry granular media, although rich knowledge about their static and plastic properties has been gained. In this paper, we provide some insights into the flow behavior of cohesive granular media from our recent numerical studies using an inclined plane and a plane shear cell. We evidence that the cohesive nature of flows is significantly affected by material properties of the particles like stiffness and inelasticity in addition to the inter-particle adhesion and introduce the concept of “effective” adhesion, which incorporates the effects of these three variables. We propose constitutive relations involving dimensionless inertial number and “effective” cohesion number, based on the “effective” adhesion to describe the rheology. We also show that increasing adhesion increases the hysteresis in granular media, evidencing the existence of a prominent shear weakening branch in the friction coefficient versus inertial number rheological curve. Moreover, we reveal that this increasing hysteresis gives rise to the increasing occurrence of shear banding instability, pointing to the increasing possibility of jamming in cohesive granular media. Finally, we present a promising experimental approach to investigate the flow behavior of cohesive granular materials, based on a simple method of preparing a long time stable medium with a controlled adhesion between particles.
Collapse
|
17
|
Liu X, Utomo NW, Zhao Q, Zheng J, Zhang D, Archer LA. Effects of Geometric Confinement on Caging and Dynamics of Polymer-Tethered Nanoparticle Suspensions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Vasisht VV, Del Gado E. Computational study of transient shear banding in soft jammed solids. Phys Rev E 2020; 102:012603. [PMID: 32795069 DOI: 10.1103/physreve.102.012603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 05/29/2020] [Indexed: 11/07/2022]
Abstract
We have designed three-dimensional numerical simulations of a soft spheres model, with size polidispersity and in athermal conditions, to study the transient shear banding that occurs during yielding of jammed soft solids. We analyze the effects of different types of drag coefficients used in the simulations and compare the results obtained using Lees-Edwards periodic boundary conditions with the case in which the same model solid is confined between two walls. The specific damping mechanism and the different boundary conditions indeed modify the load curves and the velocity profiles in the transient regime. Nevertheless, we find that the presence of a stress overshoot and of a related transient banding phenomenon, for large enough samples, is a robust feature for overdamped systems, where their presence do not depend on the specific drag used and on the different boundary conditions.
Collapse
Affiliation(s)
- Vishwas V Vasisht
- Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara P.O. - Palakkad, Kerala 678557, India.,Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| |
Collapse
|
19
|
Voigtmann T, Siebenbürger M, Amann CP, Egelhaaf SU, Fritschi S, Krüger M, Laurati M, Mutch KJ, Samwer KH. Rheology of colloidal and metallic glass formers. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04654-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractColloidal hard-sphere suspensions are convenient experimental models to understand soft matter, and also by analogy the structural-relaxation behavior of atomic or small-molecular fluids. We discuss this analogy for the flow and deformation behavior close to the glass transition. Based on a mapping of temperature to effective hard-sphere packing, the stress–strain curves of typical bulk metallic glass formers can be quantitatively compared with those of hard-sphere suspensions. Experiments on colloids give access to the microscopic structure under deformation on a single-particle level, providing insight into the yielding mechanisms that are likely also relevant for metallic glasses. We discuss the influence of higher-order angular signals in connection with non-affine particle rearrangements close to yielding. The results are qualitatively explained on the basis of the mode-coupling theory. We further illustrate the analogy of pre-strain dependence of the linear-elastic moduli using data on PS-PNiPAM suspensions.
Collapse
|
20
|
Vasisht VV, Roberts G, Del Gado E. Emergence and persistence of flow inhomogeneities in the yielding and fluidization of dense soft solids. Phys Rev E 2020; 102:010604. [PMID: 32794923 DOI: 10.1103/physreve.102.010604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
In three-dimensional computer simulations of model non-Brownian jammed suspensions, we compute the time required to reach homogeneous flow upon yielding, by analyzing stresses and particle packing at different shear rates, with and without confinement. We show that the stress overshoot and persistent shear banding preceding the complete fluidization are controlled by the presence of overconstrained microscopic domains in the initial solids. Such domains, identifiable with icosahedrally packed regions in the model used, allow for stress accumulation during the shear startup. Their structural reorganization under deformation controls the emergence and the persistence of the shear banding.
Collapse
Affiliation(s)
- Vishwas Venkatesh Vasisht
- Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara P. O, Palakkad, Kerala 678557, India and Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| | - Gabrielle Roberts
- Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| |
Collapse
|
21
|
Galloway KL, Jerolmack DJ, Arratia PE. Quantification of plasticity via particle dynamics above and below yield in a 2D jammed suspension. SOFT MATTER 2020; 16:4373-4382. [PMID: 32253419 DOI: 10.1039/c9sm02482d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The yield transition of amorphous materials is characterized by a swift increase of energy dissipation. The connection between particle dynamics, dissipation, and overall material rheology, however, has still not been elucidated. Here, we take a new approach relating trajectories to yielding, using a custom built interfacial stress rheometer, which allows for measurement of shear moduli (G',G'') of a dense athermal suspension's microstructure while simultaneously tracking particle trajectories undergoing cyclic shear. We find an increase in total area traced by particle trajectories as the system is stressed well below to well above yield. Trajectories may be placed into three categories: reversibly elastic paths; reversibly plastic paths, associated with smooth limit cycles; and irreversibly plastic paths, in which particles do not return to their original position. We find that above yield, reversibly plastic trajectories are predominantly found near to the shearing surface, whereas reversibly elastic paths are more prominent near the stationary wall. This spatial transition between particles acting as liquids to those acting as solids is characteristic of a 'melting front', which is observed to shift closer to the wall with increasing strain. We introduce a non-dimensional measure of plastic dissipation based on particle trajectories that scales linearly with strain amplitude both above and below yield, and that is unity at the rheological yield point. Surprisingly, this relation collapses for three systems of varying degrees of disorder.
Collapse
Affiliation(s)
- K Lawrence Galloway
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu
| | - Douglas J Jerolmack
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu and Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu
| |
Collapse
|
22
|
Benzi R, Divoux T, Barentin C, Manneville S, Sbragaglia M, Toschi F. Unified Theoretical and Experimental View on Transient Shear Banding. PHYSICAL REVIEW LETTERS 2019; 123:248001. [PMID: 31922825 DOI: 10.1103/physrevlett.123.248001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Dense emulsions, colloidal gels, microgels, and foams all display a solidlike behavior at rest characterized by a yield stress, above which the material flows like a liquid. Such a fluidization transition often consists of long-lasting transient flows that involve shear-banded velocity profiles. The characteristic time for full fluidization τ_{f} has been reported to decay as a power law of the shear rate γ[over ˙] and of the shear stress σ with respective exponents α and β. Strikingly, the ratio of these exponents was empirically observed to coincide with the exponent of the Herschel-Bulkley law that describes the steady-state flow behavior of these complex fluids. Here we introduce a continuum model, based on the minimization of a "free energy," that captures quantitatively all the salient features associated with such transient shear banding. More generally, our results provide a unified theoretical framework for describing the yielding transition and the steady-state flow properties of yield stress fluids.
Collapse
Affiliation(s)
- Roberto Benzi
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1-00133 Roma, Italy
| | - Thibaut Divoux
- MultiScale Material Science for Energy and Environment, UMI 3466, CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Catherine Barentin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Sébastien Manneville
- MultiScale Material Science for Energy and Environment, UMI 3466, CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Mauro Sbragaglia
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1-00133 Roma, Italy
| | - Federico Toschi
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
23
|
Wei Y, Solomon MJ, Larson RG. Time-dependent shear rate inhomogeneities and shear bands in a thixotropic yield-stress fluid under transient shear. SOFT MATTER 2019; 15:7956-7967. [PMID: 31544190 DOI: 10.1039/c9sm00902g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the rheological responses and shear-rate inhomogeneities and shear banding behaviors of a thixotropic fumed silica suspension in shear startup tests and flow reversal tests. We find that this suspension under transient shear exhibits not only viscoelasticity, yielding, kinematic hardening, and thixotropy, but also time-dependent shear inhomogeneities including bands when the apparent shear rate is below a critical value between 0.1 and 0.25 s-1. Through multiple shear startup tests and flow reversal tests, we find that thixotropy promotes flow heterogeneity while kinematic hardening suppresses it. We propose a simple thixo-plastic constitutive equation that can qualitatively predict the important features of the rheological response and banding dynamics in shear startup tests and flow reversal tests.
Collapse
Affiliation(s)
- Yufei Wei
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
24
|
Saitoh K, Tighe BP. Nonlocal Effects in Inhomogeneous Flows of Soft Athermal Disks. PHYSICAL REVIEW LETTERS 2019; 122:188001. [PMID: 31144889 DOI: 10.1103/physrevlett.122.188001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 06/09/2023]
Abstract
We numerically investigate nonlocal effects on inhomogeneous flows of soft athermal disks close to but below their jamming transition. We employ molecular dynamics to simulate Kolmogorov flows, in which a sinusoidal flow profile with fixed wave number is externally imposed, resulting in a spatially inhomogeneous shear rate. We find that the resulting rheology is strongly wave-number-dependent, and that particle migration, while present, is not sufficient to describe the resulting stress profiles within a conventional local model. We show that, instead, stress profiles can be captured with nonlocal constitutive relations that account for gradients to fourth order. Unlike nonlocal flow in yield stress fluids, we find no evidence of a diverging length scale.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Brian P Tighe
- Delft University of Technology, Process and Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
25
|
Goldstein D, Ramaswamy S, Chakraborty B. Stress fluctuations in transient active networks. SOFT MATTER 2019; 15:3520-3526. [PMID: 30969302 DOI: 10.1039/c9sm00205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inspired by experiments on dynamic extensile gels of biofilaments and motors, we propose a model of a network of linear springs with kinetics consisting of growth at a prescribed rate, death after a lifetime drawn from a distribution, and birth at a randomly chosen node. The model captures features such as the build-up of self-stress, that are not easily incorporated into hydrodynamic theories. We study the model numerically and show that our observations can largely be understood through a stochastic effective-medium model. The resulting dynamically extending force-dipole network displays many features of yielded plastic solids, and offers a way to incorporate strongly non-affine effects into theories of active solids. A rather distinctive form for the stress distribution, and a Herschel-Bulkley dependence of stress on activity, are our major predictions.
Collapse
Affiliation(s)
- Daniel Goldstein
- Martin Fisher School of Physics, Brandeis University, Waltham, USA.
| | | | | |
Collapse
|
26
|
Rheo-SANS study on relationship between micellar structures and rheological behavior of cationic gemini surfactants in solution. J Colloid Interface Sci 2019; 538:357-366. [DOI: 10.1016/j.jcis.2018.11.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022]
|
27
|
Das B, Hossain SM, Pramanick AK, Dey A, Ray M. One-Pot Synthesis of Gel Glass Embedded with Luminescent Silicon Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2507-2515. [PMID: 30561193 DOI: 10.1021/acsami.8b17604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preparation of highly luminescent glasses involves expensive and complicated processes and usually requires high temperature. In this work, we show that luminescent silicon (Si) nanoparticle (NP)- embedded silicate gel glasses can be developed under near-ambient conditions by a remarkably simple, one-pot strategy, without using any sophisticated instrumentation or technique. Simultaneous hydrolysis and reduction of (3-aminopropyl)triethoxysilane leads to the formation of colloidal Si nanocrystals that can be transformed to a glassy phase upon slow evaporation followed by freezing. Structural investigations reveal the formation of a sodium silicate gel glass framework having discernible shear bands, along with embedded Si NPs. High photoluminescence quantum yield (ca. 35-40%), low glass-transition temperature ( Tg ≈ 66-73 °C), strain-tolerant mechanical stability, and inexpensive preparation make the glass attractive for applications as display materials and photonic converters.
Collapse
Affiliation(s)
| | | | - Ashit Kumar Pramanick
- Materials Science Division , National Metallurgical Laboratory , Jamshedpur 831007 , India
| | - Arjun Dey
- Thermal Systems Group, U. R. Rao Satellite Centre (Formerly Known as ISRO Satellite Centre) , Indian Space Research Organisation , Bengaluru 560017 , India
| | | |
Collapse
|
28
|
Abstract
We present a version of soft glassy rheology that includes thermalized strain degrees of freedom. It fully specifies systems' strain-history-dependent positions on their energy landscapes and therefore allows for quantitative analysis of their heterogeneous yielding dynamics and nonequilibrium deformation thermodynamics. As a demonstration of the method, we illustrate the very different characteristics of fully thermal and nearly athermal plasticity by comparing results for thermalized and nonthermalized plastic flow.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
29
|
Omar AK, Wang ZG. Shear-Induced Heterogeneity in Associating Polymer Gels: Role of Network Structure and Dilatancy. PHYSICAL REVIEW LETTERS 2017; 119:117801. [PMID: 28949208 DOI: 10.1103/physrevlett.119.117801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 06/07/2023]
Abstract
We study associating polymer gels under steady shear using Brownian dynamics simulation to explore the interplay between the network structure, dynamics, and rheology. For a wide range of flow rates, we observe the formation of shear bands with a pronounced difference in shear rate, concentration, and structure. A striking increase in the polymer pressure in the gradient direction with shear, along with the inherently large compressibility of the gels, is shown to be a crucial factor in destabilizing homogeneous flow through shear-gradient concentration coupling. We find that shear has only a modest influence on the degree of association, but induces marked spatial heterogeneity in the network connectivity. We attribute the increase in the polymer pressure (and polymer mobility) to this structural reorganization.
Collapse
Affiliation(s)
- Ahmad K Omar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
30
|
Kohl M, Schmiedeberg M. Shear-induced slab-like domains in a directed percolated colloidal gel. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:71. [PMID: 28785865 DOI: 10.1140/epje/i2017-11560-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
We explore the structural changes of a gel-forming colloid polymer mixture under shear by employing Brownian dynamics simulations of a colloidal system with short-ranged attractive depletion interaction in a linear flow profile. While the structure of unpercolated systems changes only slightly under shearing, we discover the formation of slab-like clusters in sheared directed percolated gel networks that are confined between two walls. These gel-slabs are stable over a long time and seem to be related to the syneresis phenomena that can be observed in directed percolated colloidal gels. Only at large shear strength the slabs are destroyed and a homogeneous state with many unbounded particles can be observed. We also quantitatively analyze our results by determining void volumes.
Collapse
Affiliation(s)
- Matthias Kohl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany.
| |
Collapse
|
31
|
Lee J, Sung S, Kim Y, Park JD, Ahn KH. A new paradigm of materials processing—heterogeneity control. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Fuereder I, Ilg P. Transient inhomogeneous flow patterns in supercooled liquids under shear. SOFT MATTER 2017; 13:2192-2200. [PMID: 28239722 DOI: 10.1039/c7sm00178a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Supercooled liquids and other soft glassy systems show characteristic spatial inhomogeneities in their local dynamical properties. Using detailed molecular dynamics simulations, we find that for sufficiently low temperatures and sufficiently high shear rates supercooled liquids also show transient inhomogeneous flow patterns (shear banding) in the start-up of steady shear flow, similar to what has already been observed for many other soft glassy systems. We verify that the onset of transient shear banding coincides quite well with the appearance of a stress overshoot for temperatures in the supercooled regime. We find that the slower bands adapt less well to the imposed deformation and therefore accumulate higher shear stresses compared to the fast bands at comparable local shear rates. Our results also indicate that the shear rates of the fast and slow bands are adjusted such that the local dissipation rate is approximately the same in both bands.
Collapse
Affiliation(s)
- Ingo Fuereder
- ETH Zurich, Department of Materials, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland.
| | - Patrick Ilg
- School of Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6 6AX, UK
| |
Collapse
|
33
|
Radhakrishnan R, Divoux T, Manneville S, Fielding SM. Understanding rheological hysteresis in soft glassy materials. SOFT MATTER 2017; 13:1834-1852. [PMID: 28177015 DOI: 10.1039/c6sm02581a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Motivated by recent experimental studies of rheological hysteresis in soft glassy materials, we study numerically strain rate sweeps in simple yield stress fluids and viscosity bifurcating yield stress fluids. Our simulations of downward followed by upward strain rate sweeps, performed within fluidity models and the soft glassy rheology model, successfully capture the experimentally observed monotonic decrease of the area of the rheological hysteresis loop with sweep time in simple yield stress fluids, and the bell shaped dependence of hysteresis loop area on sweep time in viscosity bifurcating fluids. We provide arguments explaining these two different functional forms in terms of differing tendencies of simple and viscosity bifurcating fluids to form shear bands during the sweeps, and show that the banding behaviour captured by our simulations indeed agrees with that reported experimentally. We also discuss the difference in hysteresis behaviour between inelastic and viscoelastic fluids. Our simulations qualitatively agree with the experimental data discussed here for four different soft glassy materials.
Collapse
Affiliation(s)
| | - Thibaut Divoux
- Université de Bordeaux, Centre de Recherche Paul Pascal, UPR 8641, 115 av. Dr. Schweitzer, 33600 Pessac, France and MultiScale Material Science for Energy and Environment, UMI 3466, CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Sébastien Manneville
- Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Suzanne M Fielding
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
34
|
Jamali S, McKinley GH, Armstrong RC. Microstructural Rearrangements and their Rheological Implications in a Model Thixotropic Elastoviscoplastic Fluid. PHYSICAL REVIEW LETTERS 2017; 118:048003. [PMID: 28186811 DOI: 10.1103/physrevlett.118.048003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 06/06/2023]
Abstract
We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.
Collapse
Affiliation(s)
- Safa Jamali
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Robert C Armstrong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
35
|
Irani E, Chaudhuri P, Heussinger C. Athermal rheology of weakly attractive soft particles. Phys Rev E 2016; 94:052608. [PMID: 27967137 DOI: 10.1103/physreve.94.052608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 06/06/2023]
Abstract
We study the rheology of a soft particulate system where the interparticle interactions are weakly attractive. Using extensive molecular dynamics simulations, we scan across a wide range of packing fractions (ϕ), attraction strengths (u), and imposed shear rates (γ[over ̇]). In striking contrast to repulsive systems, we find that at small shear rates generically a fragile isostatic solid is formed even if we go to ϕ≪ϕ_{J}. Further, with increasing shear rates, even at these low ϕ, nonmonotonic flow curves occur which lead to the formation of persistent shear bands in large enough systems. By tuning the damping parameter, we also show that inertia plays an important role in this process. Furthermore, we observe enhanced particle dynamics in the attraction-dominated regime as well as a pronounced anisotropy of velocity and diffusion constant, which we take as precursors to the formation of shear bands. At low enough ϕ, we also observe structural changes via the interplay of low shear rates and attraction with the formation of microclusters and voids. Finally, we characterize the properties of the emergent shear bands, and thereby, we find surprisingly small mobility of these bands, leading to prohibitively long time scales and extensive history effects in ramping experiments.
Collapse
Affiliation(s)
- Ehsan Irani
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Pinaki Chaudhuri
- Institute of Mathematical Sciences, Taramani, Chennai 600 113, Tamil Nadu, India
| | - Claus Heussinger
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Radhakrishnan R, Fielding SM. Shear Banding of Soft Glassy Materials in Large Amplitude Oscillatory Shear. PHYSICAL REVIEW LETTERS 2016; 117:188001. [PMID: 27835024 DOI: 10.1103/physrevlett.117.188001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 06/06/2023]
Abstract
We study shear banding in soft glassy materials subject to a large amplitude oscillatory shear flow (LAOS). By numerical simulations of the widely used soft glassy rheology model, supplemented by more general physical arguments, we demonstrate strong banding over an extensive range of amplitudes and frequencies of the imposed shear rate γ[over ˙](t)=γ[over ˙]_{0}cos(ωt), even in materials that do not permit banding as their steady state response to a steadily imposed shear flow γ[over ˙]=γ[over ˙]_{0}=const. Highly counterintuitively, banding persists in LAOS even in the limit of zero frequency ω→0, where one might a priori have expected a homogeneous flow response in a material that does not display banding under conditions of steadily imposed shear. We explain this finding in terms of an alternating competition within each cycle between glassy aging and flow rejuvenation. Our predictions have far-reaching implications for the flow behavior of aging yield stress fluids, suggesting a generic expectation of shear banding in flows of even arbitrarily slow time variation.
Collapse
Affiliation(s)
- Rangarajan Radhakrishnan
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Suzanne M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
37
|
Shrivastav GP, Chaudhuri P, Horbach J. Yielding of glass under shear: A directed percolation transition precedes shear-band formation. Phys Rev E 2016; 94:042605. [PMID: 27841596 DOI: 10.1103/physreve.94.042605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Indexed: 06/06/2023]
Abstract
Under external mechanical loading, glassy materials, ranging from soft matter systems to metallic alloys, often respond via formation of inhomogeneous flow patterns, during yielding. These inhomogeneities can be precursors to catastrophic failure, implying that a better understanding of their underlying mechanisms could lead to the design of smarter materials. Here, extensive molecular dynamics simulations are used to reveal the emergence of heterogeneous dynamics in a binary Lennard-Jones glass, subjected to a constant strain rate. At a critical strain, this system exhibits for all considered strain rates a transition towards the formation of a percolating cluster of mobile regions. We give evidence that this transition belongs to the universality class of directed percolation. Only at low shear rates, the percolating cluster subsequently evolves into a transient (but long-lived) shear band with a diffusive growth of its width. Finally, the steady state with a homogeneous flow pattern is reached. In the steady state, percolation transitions also do occur constantly, albeit over smaller strain intervals, to maintain the stationary plastic flow in the system.
Collapse
Affiliation(s)
- Gaurav Prakash Shrivastav
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
38
|
Mohorič T, Dobnikar J, Horbach J. Two-dimensional magnetic colloids under shear. SOFT MATTER 2016; 12:3142-3148. [PMID: 26877059 DOI: 10.1039/c6sm00023a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Complex rheological properties of soft disordered solids, such as colloidal gels or glasses, inspire a range of novel applications. However, the microscopic mechanisms of their response to mechanical loading are not well understood. Here, we elucidate some aspects of these mechanisms by studying a versatile model system, i.e. two-dimensional superparamagnetic colloids in a precessing magnetic field, whose structure can be tuned from a hexagonal crystal to a disordered gel network by varying the external field opening angle θ. We perform Langevin dynamics simulations subjecting these structures to a constant shear rate and observe three qualitatively different types of material response. In hexagonal crystals (θ = 0°), at a sufficiently low shear rate, plastic flow occurs via successive stress drops at which the stress releases due to the formation of dislocation defects. The gel network at θ = 48°, on the contrary, via bond rearrangement and transient shear banding evolves into a homogeneously stretched network at large strains. The latter structure remains metastable after switching off of the shear. At θ = 50°, the external shear makes the system unstable against phase separation and causes a failure of the network structure leading to the formation of hexagonal close packed clusters interconnected by particle chains. At a microcopic level, our simulations provide insight into some of the mechanisms by which strain localization as well as material failure occur in a simple gel-like network. Furthermore, we demonstrate that new stretched network structures can be generated by the application of shear.
Collapse
Affiliation(s)
- Tomaž Mohorič
- International Research Centre for Soft Matter, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | |
Collapse
|
39
|
Karimi K, Barrat JL. Role of inertia in the rheology of amorphous systems: A finite-element-based elastoplastic model. Phys Rev E 2016; 93:022904. [PMID: 26986396 DOI: 10.1103/physreve.93.022904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 06/05/2023]
Abstract
A simple finite-element analysis with varying damping strength is used to model the athermal shear rheology of densely packed glassy systems at a continuum level. We focus on the influence of dissipation on bulk rheological properties. Our numerical studies, done over a wide range of damping coefficients, identify two well-separated rheological regimes along with a crossover region controlled by a critical damping. In the overdamped limit, inertial effects are negligible and the rheological response is well described by the commonly observed Herschel-Bulkley equation. In stark contrast, inertial vibrations in the underdamped regime prompt a significant drop in the mean-stress level, leading to a nonmonotonic constitutive relation. The observed negative slope in the flow curve, which is a signature of mechanical instability and thus permanent shear banding, arises from the sole influence of inertia, in qualitative agreement with the recent molecular dynamics study of Nicolas et al., Phys. Rev. Lett. 116, 058303 (2016).
Collapse
Affiliation(s)
- Kamran Karimi
- Université Grenoble Alpes and CNRS, LiPhy, F-38000 Grenoble, France
| | | |
Collapse
|
40
|
Benzi R, Sbragaglia M, Bernaschi M, Succi S, Toschi F. Cooperativity flows and shear-bandings: a statistical field theory approach. SOFT MATTER 2016; 12:514-530. [PMID: 26486875 DOI: 10.1039/c5sm01862e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cooperativity effects have been proposed to explain the non-local rheology in the dynamics of soft jammed systems. Based on the analysis of the free-energy model proposed by L. Bocquet, A. Colin and A. Ajdari, Phys. Rev. Lett., 2009, 103, 036001, we show that cooperativity effects resulting from the non-local nature of the fluidity (inverse viscosity) are intimately related to the emergence of shear-banding configurations. This connection materializes through the onset of inhomogeneous compact solutions (compactons), wherein the fluidity is confined to finite-support subregions of the flow and strictly zero elsewhere. The compacton coexistence with regions of zero fluidity ("non-flowing vacuum") is shown to be stabilized by the presence of mechanical noise, which ultimately shapes up the equilibrium distribution of the fluidity field, the latter acting as an order parameter for the flow-noflow transitions occurring in the material.
Collapse
Affiliation(s)
- R Benzi
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Sbragaglia
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Bernaschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - S Succi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - F Toschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy and Department of Physics and Department of Mathematics and Computer Science and J. M. Burgerscentrum, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| |
Collapse
|
41
|
Kurokawa A, Vidal V, Kurita K, Divoux T, Manneville S. Avalanche-like fluidization of a non-Brownian particle gel. SOFT MATTER 2015; 11:9026-9037. [PMID: 26403168 DOI: 10.1039/c5sm01259g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report on the fluidization dynamics of an attractive gel composed of non-Brownian particles made of fused silica colloids. Extensive rheology coupled to ultrasonic velocimetry allows us to characterize the global stress response together with the local dynamics of the gel during shear startup experiments. In practice, after being rejuvenated by a preshear, the gel is left to age for a time tw before being subjected to a constant shear rate [small gamma, Greek, dot above]. We investigate in detail the effects of both tw and [small gamma, Greek, dot above] on the fluidization dynamics and build a detailed state diagram of the gel response to shear startup flows. The gel may display either transient shear banding towards complete fluidization or steady-state shear banding. In the former case, we unravel that the progressive fluidization occurs by successive steps that appear as peaks on the global stress relaxation signal. Flow imaging reveals that the shear band grows until complete fluidization of the material by sudden avalanche-like events which are distributed heterogeneously along the vorticity direction and correlated to large peaks in the slip velocity at the moving wall. These features are robust over a wide range of tw and [small gamma, Greek, dot above] values, although the very details of the fluidization scenario vary with [small gamma, Greek, dot above]. Finally, the critical shear rate [small gamma, Greek, dot above]* that separates steady-state shear-banding from steady-state homogeneous flow depends on the width of the shear cell and exhibits a nonlinear dependence with tw. Our work brings about valuable experimental data on transient flows of attractive dispersions, highlighting the subtle interplay between shear, wall slip and aging whose modeling constitutes a major challenge that has not been met yet.
Collapse
Affiliation(s)
- Aika Kurokawa
- Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Divoux T, Lapeyre V, Ravaine V, Manneville S. Wall slip across the jamming transition of soft thermoresponsive particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:060301. [PMID: 26764612 DOI: 10.1103/physreve.92.060301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 06/05/2023]
Abstract
Flows of suspensions are often affected by wall slip, that is, the fluid velocity v(f) in the vicinity of a boundary differs from the wall velocity v(w) due to the presence of a lubrication layer. While the slip velocity v(s)=|v(f)-v(w)| robustly scales linearly with the stress σ at the wall in dilute suspensions, there is no consensus regarding denser suspensions that are sheared in the bulk, for which slip velocities have been reported to scale as a v(s)∝σ(p) with exponents p inconsistently ranging between 0 and 2. Here we focus on a suspension of soft thermoresponsive particles and show that v(s)) actually scales as a power law of the viscous stress σ-σ(c), where σ(c) denotes the yield stress of the bulk material. By tuning the temperature across the jamming transition, we further demonstrate that this scaling holds true over a large range of packing fractions ϕ on both sides of the jamming point and that the exponent p increases continuously with ϕ, from p=1 in the case of dilute suspensions to p=2 for jammed assemblies. These results allow us to successfully revisit inconsistent data from the literature and pave the way for a continuous description of wall slip above and below jamming.
Collapse
Affiliation(s)
- Thibaut Divoux
- Centre de Recherche Paul Pascal, CNRS UPR 8641-115 avenue Dr. Schweitzer, 33600 Pessac, France
| | | | - Valérie Ravaine
- Université de Bordeaux, ISM, IPB, 33607 Pessac Cedex, France
| | - Sébastien Manneville
- Université de Lyon, Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS UMR 5672, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
43
|
Buttinoni I, Zell ZA, Squires TM, Isa L. Colloidal binary mixtures at fluid-fluid interfaces under steady shear: structural, dynamical and mechanical response. SOFT MATTER 2015; 11:8313-21. [PMID: 26347409 PMCID: PMC4618164 DOI: 10.1039/c5sm01693b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We experimentally study the link between structure, dynamics and mechanical response of two-dimensional (2D) binary mixtures of colloidal microparticles spread at water/oil interfaces. The particles are driven into steady shear by a microdisk forced to rotate at a controlled angular velocity. The flow causes particles to layer into alternating concentric rings of small and big colloids. The formation of such layers is linked to the local, position-dependent shear rate, which triggers two distinct dynamical regimes: particles either move continuously ("Flowing") close to the microdisk, or exhibit intermittent "Hopping" between local energy minima farther away. The shear-rate-dependent surface viscosity of the monolayers can be extracted from a local interfacial stress balance, giving "macroscopic" flow curves whose behavior corresponds to the distinct microscopic regimes of particle motion. Hopping regions reveal a higher resistance to flow compared to the flowing regions, where spatial organization into layers reduces dissipation.
Collapse
Affiliation(s)
- Ivo Buttinoni
- Laboratory for Interfaces, Soft matter and Assembly, Department of Materials, ETH Zurich, Switzerland.
| | - Zachary A Zell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106-5080, USA
| | - Todd M Squires
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106-5080, USA
| | - Lucio Isa
- Laboratory for Interfaces, Soft matter and Assembly, Department of Materials, ETH Zurich, Switzerland.
| |
Collapse
|
44
|
Lin J, Gueudré T, Rosso A, Wyart M. Criticality in the Approach to Failure in Amorphous Solids. PHYSICAL REVIEW LETTERS 2015; 115:168001. [PMID: 26550903 DOI: 10.1103/physrevlett.115.168001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 06/05/2023]
Abstract
Failure of amorphous solids is fundamental to various phenomena, including landslides and earthquakes. Recent experiments indicate that highly plastic regions form elongated structures that are especially apparent near the maximal shear stress Σmax where failure occurs. This observation suggested that Σmax acts as a critical point where the length scale of those structures diverges, possibly causing macroscopic transient shear bands. Here, we argue instead that the entire solid phase (Σ<Σmax) is critical, that plasticity always involves system-spanning events, and that their magnitude diverges at Σmax independently of the presence of shear bands. We relate the statistics and fractal properties of these rearrangements to an exponent θ that captures the stability of the material, which is observed to vary continuously with stress, and we confirm our predictions in elastoplastic models.
Collapse
Affiliation(s)
- Jie Lin
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| | - Thomas Gueudré
- DISAT, Politecnico Corso Duca degli Abruzzi, I-10129 Torino, Italy
| | - Alberto Rosso
- Laboratoire de Physique Théorique et Modèles Statistiques (UMR CNRS 8626), Université de Paris-Sud, Orsay Cedex 91405, France
| | - Matthieu Wyart
- Institute of Theoretical Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Joshi YM. A model for aging under deformation field, residual stresses and strains in soft glassy materials. SOFT MATTER 2015; 11:3198-3214. [PMID: 25760675 DOI: 10.1039/c5sm00217f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A model is proposed that considers aging and rejuvenation in a soft glassy material as, respectively, a decrease and an increase in free energy. The aging term is weighted by an inverse of characteristic relaxation time suggesting that greater mobility of the constituents induces faster aging in a material. A dependence of relaxation time on free energy is proposed, which under quiescent conditions leads to a power law dependence of relaxation time on waiting time as observed experimentally. The model considers two cases, namely, a constant modulus when aging is entropy controlled and a time dependent modulus. In the former and the latter cases the model has, respectively, two and three experimentally measurable parameters that are physically meaningful. Overall, the model predicts how the material undergoes aging and approaches a rejuvenated state under the application of a deformation field. In particular, the model proposes distinctions between various kinds of rheological effects for different combinations of parameters. Interestingly, when the relaxation time evolution is stronger than linear, the model predicts various features observed in soft glassy materials such as thixotropic and constant yield stress, thixotropic shear banding, and the presence of residual stress and strain.
Collapse
Affiliation(s)
- Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
46
|
Yang B, Sharp JS, Smith MI. Shear banding in drying films of colloidal nanoparticles. ACS NANO 2015; 9:4077-84. [PMID: 25825797 DOI: 10.1021/acsnano.5b00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drying suspensions of colloidal nanoparticles exhibit a variety of interesting strain release mechanisms during film formation. These result in the selection of characteristic length scales during failure processes such as cracking and subsequent delamination. A wide range of materials (e.g., bulk metallic glasses) release strain through plastic deformations which occur in a narrow band of material known as a shear band. Here we show that drying colloidal films also exhibit shear banding. Bands are observed to form a small distance behind the drying front and then to propagate rapidly at ∼45° to the direction of drying. It is shown that the spacing of the bands depends on salt concentration and the evaporation rate of the colloidal suspension. These combined observations suggest that there is a critical shear rate (related to the film yield stress) which controls the ratio of bandwidth to band spacing. Local deformations were measured in the early stages of drying using fluorescent tracer particles. The measurements were used to show that the existence of shear bands is linked to the compaction of particles perpendicular to the drying front. The spacing of shear bands was also found to be strongly correlated with the characteristic length scale of the compaction process. These combined studies elucidate the role of plastic deformation during pattern formation in drying films of colloidal nanoparticles.
Collapse
Affiliation(s)
- Bin Yang
- †School of Physics and Astronomy and ‡Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - James S Sharp
- †School of Physics and Astronomy and ‡Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Michael I Smith
- †School of Physics and Astronomy and ‡Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
47
|
|
48
|
|