1
|
Nitzke I, Pohl S, Thol M, Span R, Vrabec J. How well does the Tang-Toennies potential represent the thermodynamic properties of argon? Mol Phys 2022. [DOI: 10.1080/00268976.2022.2078240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Isabel Nitzke
- Thermodynamics and Process Engineering, Technische Universtität Berlin, Berlin, Germany
| | - Sven Pohl
- Thermodynamics, Ruhr-Universität Bochum, Bochum, Germany
| | - Monika Thol
- Thermodynamics, Ruhr-Universität Bochum, Bochum, Germany
| | - Roland Span
- Thermodynamics, Ruhr-Universität Bochum, Bochum, Germany
| | - Jadran Vrabec
- Thermodynamics and Process Engineering, Technische Universtität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Schottelius A, Mambretti F, Kalinin A, Beyersdorff B, Rothkirch A, Goy C, Müller J, Petridis N, Ritzer M, Trinter F, Fernández JM, Ezquerra TA, Galli DE, Grisenti RE. Crystal growth rates in supercooled atomic liquid mixtures. NATURE MATERIALS 2020; 19:512-516. [PMID: 32066929 DOI: 10.1038/s41563-020-0613-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Crystallization is a fundamental process in materials science, providing the primary route for the realization of a wide range of new materials. Crystallization rates are also considered to be useful probes of glass-forming ability1-3. At the microscopic level, crystallization is described by the classical crystal nucleation and growth theories4,5, yet in general solid formation is a far more complex process. In particular, the observation of apparently different crystal growth regimes in many binary liquid mixtures greatly challenges our understanding of crystallization1,6-12. Here, we study by experiments, theory and computer simulations the crystallization of supercooled mixtures of argon and krypton, showing that crystal growth rates in these systems can be reconciled with existing crystal growth models only by explicitly accounting for the non-ideality of the mixtures. Our results highlight the importance of thermodynamic aspects in describing the crystal growth kinetics, providing a substantial step towards a more sophisticated theory of crystal growth.
Collapse
Affiliation(s)
| | | | - Anton Kalinin
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Björn Beyersdorff
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Andre Rothkirch
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Claudia Goy
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany
| | - Jan Müller
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany
| | - Nikolaos Petridis
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Maurizio Ritzer
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany
| | - Florian Trinter
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - José M Fernández
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| | - Tiberio A Ezquerra
- Macromolecular Physics Department, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| | - Davide E Galli
- Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
| | - Robert E Grisenti
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany.
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| |
Collapse
|
3
|
Červinka C, Fulem M, Stoffel RP, Dronskowski R. Thermodynamic Properties of Molecular Crystals Calculated within the Quasi-Harmonic Approximation. J Phys Chem A 2016; 120:2022-34. [PMID: 26959684 DOI: 10.1021/acs.jpca.6b00401] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A computational study of the possibilities of contemporary theoretical chemistry as regards calculated thermodynamic properties for molecular crystals from first-principles is presented. The study is performed for a testing set of 22 low-temperature crystalline phases whose properties such as densities of phonon states, isobaric heat capacities, and densities are computed as functions of temperature within the quasi-harmonic approximation. Electronic structure and lattice dynamics are treated by plane-wave based calculations with optPBE-vdW functional. Comparison of calculated results with reliable critically assessed experimental data is especially emphasized.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague , Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague , Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Ralf Peter Stoffel
- Institute of Inorganic Chemistry and Jülich-Aachen Research Alliance (JARA-HPC), RWTH Aachen University , Landoltweg 1, D-52056 Aachen, Germany
| | - Richard Dronskowski
- Institute of Inorganic Chemistry and Jülich-Aachen Research Alliance (JARA-HPC), RWTH Aachen University , Landoltweg 1, D-52056 Aachen, Germany
| |
Collapse
|
4
|
|
5
|
|
6
|
|
7
|
Affiliation(s)
- D.N. Card
- a Department of Chemistry , University of Western Ontario , London , Ontario , N6A 5B7 , Canada
| | - P.W.M. Jacobs
- a Department of Chemistry , University of Western Ontario , London , Ontario , N6A 5B7 , Canada
- b Centre for Chemical Physics, University of Western Ontario
| |
Collapse
|
8
|
Affiliation(s)
- A. J. E. Foreman
- a Theoretical Physics Division , Atomic Energy Research Establishment , Harwell, Berks
| |
Collapse
|
9
|
Marcelli G, Tenenbaum A. Quantumlike short-time behavior of a classical crystal. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003; 68:041112. [PMID: 14682928 DOI: 10.1103/physreve.68.041112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Indexed: 05/24/2023]
Abstract
We have performed a molecular-dynamics simulation of a face-centered-cubic Lennard-Jones crystal, and studied its relaxation toward equilibrium and its microcanonical equilibrium dynamics through the computation of the normal modes. At low temperature, the weak interaction among normal modes yields a very slow relaxation of the fluctuation of the kinetic energy; this requires a new formulation of the measure of the microcanonical specific heat at constant volume. This specific heat turns out to depend on the time of observation; for times of the order of 20 ps, its values are much nearer to the quantum ones than to the value 3R predicted by the classical Dulong and Petit law. For longer observation times, the classical specific heat progressively approaches 3R over most of the temperature range of the solid crystal, with the exception of the lowest temperature range, where it still drops to values close to zero. The time dependence of the specific heat of the crystal is similar to the behavior found in a supercooled liquid near the glass transition.
Collapse
Affiliation(s)
- Gianluca Marcelli
- Department of Bioengineering, Physiological Flow Studies Group, Imperial College of Science Technology and Medicine, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
10
|
|
11
|
|
12
|
|
13
|
Beaumont RH, Chihara H, Morrison JA. Thermodynamic Properties of Krypton. Vibrational and Other Properties of Solid Argon and Solid Krypton. ACTA ACUST UNITED AC 2002. [DOI: 10.1088/0370-1328/78/6/347] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Feldman C. Calculation of 0cdifferences for the face-centred cubic and close-packed hexagonal lattices in the ideal inert gas solids. ACTA ACUST UNITED AC 2002. [DOI: 10.1088/0370-1328/86/4/325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Leech JW, Reissland JA. Anharmonic effects in inert gas solids. II. Method applied to Ne, Ar, Kr, Xe. ACTA ACUST UNITED AC 2001. [DOI: 10.1088/0022-3719/3/5/014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Fournier J, Deson J, Vermeil C. Description of an apparatus and experimental procedures for low temperature spectroscopy and photochemistry of condensed gases. ACTA ACUST UNITED AC 2001. [DOI: 10.1088/0022-3735/9/10/027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Crawford RK, Lewis WF, Daniels WB. Thermodynamics of solid argon at high temperatures. ACTA ACUST UNITED AC 2001. [DOI: 10.1088/0022-3719/9/8/011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
|
19
|
Keyse RJ, Venables JA. Stacking fault energy and crystal stability of solid krypton and xenon. ACTA ACUST UNITED AC 2000. [DOI: 10.1088/0022-3719/18/23/008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Calado JCG, Dias FA, Lopes JNC, Rebelo LPN. Vapor Pressure and Related Thermodynamic Properties of 36Ar. J Phys Chem B 2000. [DOI: 10.1021/jp0006936] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. C. G. Calado
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - F. A. Dias
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - J. N. C. Lopes
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - L. P. N. Rebelo
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| |
Collapse
|
21
|
Abstract
Data for the deposition of argon, nitrogen and carbon dioxide on cold, metal surfaces are considered in detail. It is concluded that argon and nitrogen deposit when the incident gas pressure equals the sublimation pressure at the respective surface temperature, and growth therefore proceeds without any significant intermediate nucleation barrier. Carbon dioxide, however, requires considerable supersaturation of the gaseous phase and consequently bulk deposition is inhibited by a nucleation barrier. The results are analysed with a view to determining the critical nucleus size and the adsorption energy. The ‘classical’ method of analysis gives unsatisfactory and inconclusive results. In contrast, the ‘atomistic’ approach is found to give a good account of the critical deposition phenomenon. The onset of gross deposition is found to be due entirely to capture of single molecules by stable nuclei, rather than by the formation of critical nuclei as the ‘ classical ’ theory wrongly assumes. The number of molecules in the critical nucleus is found to be about nine and a value of 9.4 kJ mol
-1
is obtained for the adsorption energy, suggesting that nucleation occurs on top of a strongly bound adsorbed layer of contaminants or carbon dioxide itself, rather than on bare metal.
Collapse
|
22
|
Asherie N, Lomakin A, Benedek GB. Phase Diagram of Colloidal Solutions. PHYSICAL REVIEW LETTERS 1996; 77:4832-4835. [PMID: 10062642 DOI: 10.1103/physrevlett.77.4832] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
23
|
|
24
|
Soulayman SS, Zanchetta JV, Giuntini JC. A statistical theory of mixtures: Application in the calculation of the vacancy formation parameters in rare gas solids. J Chem Phys 1995. [DOI: 10.1063/1.469015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Zhu DM, Dash JG. Surface melting and roughening of adsorbed argon films. PHYSICAL REVIEW LETTERS 1986; 57:2959-2962. [PMID: 10033918 DOI: 10.1103/physrevlett.57.2959] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
26
|
Becker KD, Hoheisel C. The dynamic behavior of a crystal during defect jumps. I. Molecular dynamics studies using Lennard‐Jones potential functions. J Chem Phys 1982. [DOI: 10.1063/1.443685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Larher Y. The critical exponent β associated with the two-dimensional condensation in the second adlayer of argon on the cleavage face of cadmium chloride. Mol Phys 1979. [DOI: 10.1080/00268977900102051] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Tallon JL. The volume dependence of elastic moduli and the Born-Durand melting hypothesis. ACTA ACUST UNITED AC 1979. [DOI: 10.1080/01418617908236889] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Mountfield KR, Weir RD. Low temperature heat capacity, dielectric constant, and thermodynamic properties of solid germane. J Chem Phys 1978. [DOI: 10.1063/1.436589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Schwalbe LA, Crawford RK, Chen HH, Aziz RA. Thermodynamic consistency of vapor pressure and calorimetric data for argon, krypton, and xenon. J Chem Phys 1977. [DOI: 10.1063/1.433701] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Mountfield KR, Weir RD. Low temperature heat capacity, dielectric constant, and thermodynamic properties of solid perchloryl fluoride. J Chem Phys 1977. [DOI: 10.1063/1.433950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
|
33
|
Knight LB, Brittain RD, Starr MA, Joyner CH. Ultraviolet emission from magnesium atoms isolated in rare gas matrices. J Chem Phys 1974. [DOI: 10.1063/1.1681877] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
|
35
|
Greer SC, Sengers JMHL, Furukawa GT. Heat Capacity near the Consolute Point in Solid CH4–Ar. J Chem Phys 1972. [DOI: 10.1063/1.1678188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Kanno H. A New Theory of Melting at High Pressures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1972. [DOI: 10.1246/bcsj.45.2687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
|
38
|
Fisher R, Watts R. Solid argon : Monte Carlo calculations along the solid-vapour coexistence curve. Mol Phys 1972. [DOI: 10.1080/00268977200101041] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Lee MW, Eshelman DM, Bigeleisen J. Vapor Pressures of Isotopic Krypton Mixtures. Intermolecular Forces in Solid and Liquid Krypton. J Chem Phys 1972. [DOI: 10.1063/1.1677907] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
|
41
|
|
42
|
|
43
|
Lee MW, Fuks S, Bigeleisen J. Vapor Pressures of36Ar and40Ar. Intermolecular Forces in Solid and Liquid Argon. J Chem Phys 1970. [DOI: 10.1063/1.1673880] [Citation(s) in RCA: 42] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
44
|
Pace EL, Bivens RL. Thermodynamic Investigation of Solid Argon–Oxygen Mixtures. J Chem Phys 1970. [DOI: 10.1063/1.1674053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Utting BD, Walkley J. Exp‐6 Cell Model Calculations for the Inert Gas Solids. II. Thermodynamic Properties—The Effect of the Triple‐Dipole Term. J Chem Phys 1970. [DOI: 10.1063/1.1672798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
|
47
|
Klein ML, Horton GK, Feldman JL. Thermodynamic Properties of Solid Ar, Kr, and Xe Based Upon a Short-Range Central Force and the Conventional Perturbation Expansion of the Partition Function. ACTA ACUST UNITED AC 1969. [DOI: 10.1103/physrev.184.968] [Citation(s) in RCA: 94] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Finegold L, Phillips NE. Low-Temperature Heat Capacities of Solid Argon and Krypton. ACTA ACUST UNITED AC 1969. [DOI: 10.1103/physrev.177.1383] [Citation(s) in RCA: 95] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
|
50
|
Pace EL, Smith JH, Jepson BE. Thermodynamic Investigation of Solid Argon–Nitrogen Mixtures. J Chem Phys 1969. [DOI: 10.1063/1.1670795] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|