1
|
Kim H, Tanatar MA, Flint R, Petrovic C, Hu R, White BD, Lum IK, Maple MB, Prozorov R. Nodal to nodeless superconducting energy-gap structure change concomitant with fermi-surface reconstruction in the heavy-fermion compound CeCoIn(5). PHYSICAL REVIEW LETTERS 2015; 114:027003. [PMID: 25635560 DOI: 10.1103/physrevlett.114.027003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 06/04/2023]
Abstract
The London penetration depth λ(T) was measured in single crystals of Ce_{1-x}R_{x}CoIn_{5}, R=La, Nd, and Yb down to T_{min}≈50 mK (T_{c}/T_{min}∼50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law Δλ(T)∝T^{n}, with n∼1, consistent with the existence of line nodes in the superconducting gap. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of T_{c}; however, the effects on Δλ(T) differ. While La and Nd substitution leads to an increase in the exponent n and saturation at n∼2, as expected for a dirty nodal superconductor, Yb substitution leads to n>3, suggesting a change from nodal to nodeless superconductivity. This superconducting gap structure change happens in the same doping range where changes of the Fermi-surface topology were reported, implying that the nodal structure and Fermi-surface topology are closely linked.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M A Tanatar
- Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - R Flint
- Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - C Petrovic
- Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Rongwei Hu
- Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - B D White
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - I K Lum
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - M B Maple
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - R Prozorov
- Ames Laboratory and Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
2
|
Nodal quasiparticle dynamics in the heavy fermion superconductor CeCoIn₅ revealed by precision microwave spectroscopy. Nat Commun 2014; 4:2477. [PMID: 24051545 DOI: 10.1038/ncomms3477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 08/21/2013] [Indexed: 11/08/2022] Open
Abstract
CeCoIn₅ is a heavy fermion superconductor with strong similarities to the high-Tc cuprates, including quasi-two-dimensionality, proximity to antiferromagnetism and probable d-wave pairing arising from a non-Fermi-liquid normal state. Experiments allowing detailed comparisons of their electronic properties are of particular interest, but in most cases are difficult to realize, due to their very different transition temperatures. Here we use low-temperature microwave spectroscopy to study the charge dynamics of the CeCoIn₅ superconducting state. The similarities to cuprates, in particular to ultra-clean YBa₂Cu₃O(y), are striking: the frequency and temperature dependence of the quasiparticle conductivity are instantly recognizable, a consequence of rapid suppression of quasiparticle scattering below T(c); and penetration-depth data, when properly treated, reveal a clean, linear temperature dependence of the quasiparticle contribution to superfluid density. The measurements also expose key differences, including prominent multiband effects and a temperature-dependent renormalization of the quasiparticle mass.
Collapse
|
3
|
Howald L, Maisuradze A, de Réotier PD, Yaouanc A, Baines C, Lapertot G, Mony K, Brison JP, Keller H. Strong pressure dependence of the magnetic penetration depth in single crystals of the heavy-fermion superconductor CeCoIn5 studied by muon spin rotation. PHYSICAL REVIEW LETTERS 2013; 110:017005. [PMID: 23383830 DOI: 10.1103/physrevlett.110.017005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Indexed: 06/01/2023]
Abstract
In the tetragonal heavy fermion system CeCoIn(5) the unconventional superconducting state is probed by means of muon spin rotation. The pressure dependence (0-1 GPa) of the basal-plane magnetic penetration depth (λ(a)), the penetration depth anisotropy (γ = λ(c)/λ(a)) and the temperature dependence of 1/λ(i)(2) (i = a, c) were studied in single crystals. A strong decrease of λ(a) with pressure was observed, while γ and λ(i)(2)(0)/λ(i)(2)(T) are pressure independent. A linear relationship between 1/λ(a)(2)(270 mK) and T(c) was also found. The large decrease of λ(a) with pressure is the signature of an increase of the number of superconducting quasiparticles by a factor of about 2.
Collapse
Affiliation(s)
- L Howald
- Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
She JH, Balatsky AV. Berezinskii-Kosterlitz-Thouless transition to the superconducting state of heavy-fermion superlattices. PHYSICAL REVIEW LETTERS 2012; 109:077002. [PMID: 23006395 DOI: 10.1103/physrevlett.109.077002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Indexed: 06/01/2023]
Abstract
We propose an explanation of the superconducting transitions discovered in the heavy-fermion superlattices by Mizukami et al. [Nature Phys. 7, 849 (2011)] in terms of Berezinskii-Kosterlitz-Thouless (BKT) transition. We observe that the effective mass mismatch between the heavy-fermion superconductor and the normal metal regions provides an effective barrier that enables quasi-2D superconductivity in such systems. We show that the resistivity data, both with and without magnetic field, are consistent with BKT transition. Furthermore, we study the influence of a nearby magnetic quantum critical point on the vortex system and find that the vortex core energy can be significantly reduced due to magnetic fluctuations. Further reduction of the gap with decreasing number of layers is understood as a result of pair breaking effect of Yb ions at the interface.
Collapse
Affiliation(s)
- Jian-Huang She
- Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA
| | | |
Collapse
|
5
|
Paulose PL, Ramakrishnan S, Hossain Z. Doping dependent evolution of magnetism and superconductivity in Eu(1-x)K(x)Fe2As2 (x = 0-1) and temperature dependence of the lower critical field H(c1). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:455702. [PMID: 22019495 DOI: 10.1088/0953-8984/23/45/455702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have synthesized polycrystalline samples of Eu(1-x)K(x)Fe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac and dc magnetic susceptibility, and electrical resistivity measurements. A clear signature of the coexistence of a superconducting transition (T(c) = 5.5 K) with spin density wave (SDW) ordering is observed in our underdoped sample with x = 0.15. The SDW transition disappears completely for the x = 0.3 sample and superconductivity arises below 20 K. The superconducting transition temperature Tc increases with increase in the K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent Tx phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu moments coexists with the superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest the 2+ valence state of the Eu ions. We also present the temperature dependence of the lower critical field H(c1) of the superconducting polycrystalline samples. The values of H(c1)(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account are 202, 330, and 212 Oe, respectively. The London penetration depth λ(T) calculated from the lower critical field does not show exponential dependence at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power law feature up to T = 0.3Tc, as observed in Ba(1-x)K(x)Fe2As2 and BaFe(2-x)Co(x)As2.
Collapse
|
6
|
Gordon RT, Ni N, Martin C, Tanatar MA, Vannette MD, Kim H, Samolyuk GD, Schmalian J, Nandi S, Kreyssig A, Goldman AI, Yan JQ, Bud'ko SL, Canfield PC, Prozorov R. Unconventional London penetration depth in single-crystal Ba(Fe0.93Co0.07)2As2 superconductors. PHYSICAL REVIEW LETTERS 2009; 102:127004. [PMID: 19392314 DOI: 10.1103/physrevlett.102.127004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Indexed: 05/27/2023]
Abstract
The London penetration depth lambda(T) has been measured in single crystals of Ba(Fe0.93Co0.07)2As2. The observed low-temperature variation of lambda(T) follows a power law, Deltalambda(T) approximately T(n) with n approximately 2.4+/-0.1, indicating the existence of normal quasiparticles down to at least 0.02T(c). This is in contrast with previous penetration depth measurements on single crystals of NdFeAsO1-xFx and SmFeAsO1-xFx, which indicate an anisotropic but nodeless gap. We discuss possible explanations of the observed power law behavior.
Collapse
Affiliation(s)
- R T Gordon
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|