1
|
Tosti Guerra F, Poppleton E, Šulc P, Rovigatti L. ANNaMo: Coarse-grained modeling for folding and assembly of RNA and DNA systems. J Chem Phys 2024; 160:205102. [PMID: 38814009 DOI: 10.1063/5.0202829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024] Open
Abstract
The folding of RNA and DNA strands plays crucial roles in biological systems and bionanotechnology. However, studying these processes with high-resolution numerical models is beyond current computational capabilities due to the timescales and system sizes involved. In this article, we present a new coarse-grained model for investigating the folding dynamics of nucleic acids. Our model represents three nucleotides with a patchy particle and is parameterized using well-established nearest-neighbor models. Thanks to the reduction of degrees of freedom and to a bond-swapping mechanism, our model allows for simulations at timescales and length scales that are currently inaccessible to more detailed models. To validate the performance of our model, we conducted extensive simulations of various systems: We examined the thermodynamics of DNA hairpins, capturing their stability and structural transitions, the folding of an MMTV pseudoknot, which is a complex RNA structure involved in viral replication, and also explored the folding of an RNA tile containing a k-type pseudoknot. Finally, we evaluated the performance of the new model in reproducing the melting temperatures of oligomers and the dependence on the toehold length of the displacement rate in toehold-mediated displacement processes, a key reaction used in molecular computing. All in all, the successful reproduction of experimental data and favorable comparisons with existing coarse-grained models validate the effectiveness of the new model.
Collapse
Affiliation(s)
- F Tosti Guerra
- Department of Physics, Sapienza University of Rome, Roma, Italy
| | - E Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, USA
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - P Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, USA
- Department of Bioscience, School of Natural Sciences, Technical University Munich, Munich, Germany
| | - L Rovigatti
- Department of Physics, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
2
|
Dabin A, Stirnemann G. Atomistic simulations of RNA duplex thermal denaturation: Sequence- and forcefield-dependence. Biophys Chem 2024; 307:107167. [PMID: 38262278 DOI: 10.1016/j.bpc.2023.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024]
Abstract
Double-stranded RNA is the end-product of template-based replication, and is also the functional state of some biological RNAs. Similarly to proteins and DNA, they can be denatured by temperature, with important physiological and technological implications. Here, we use an in silico strategy to probe the thermal denaturation of RNA duplexes. Following previous results that were obtained on a few different duplexes, and which nuanced the canonical 2-state picture of nucleic acid denaturation, we here specifically address three different aspects that greatly improve our description of the temperature-induced dsRNA separation. First, we investigate the effect of the spatial distribution of weak and strong base-pairs among the duplex sequence. We show that the deviations from the two-state dehybridization mechanism are more pronounced when a strong core is flanked with weak extremities, while duplexes with a weak core but strong extremities exhibit a two-state behavior, which can be explained by the key role played by base fraying. This was later verified by generating artificial hairpin or circular states containing one or two locked duplex extremities, which results in an important reinforcement of the entire HB structure of the duplex and higher melting temperatures. Finally, we demonstrate that our results are little sensitive to the employed combination of RNA and water forcefields. The trends in thermal stability among the different sequences as well as the observed unfolding mechanisms (and the deviations from a two-state scenario) remain the same regardless of the employed atomistic models. However, our study points to possible limitations of recent reparametrizations of the Amber RNA forcefield, which sometimes results in duplexes that readily denature under ambient conditions, in contradiction with available experimental results.
Collapse
Affiliation(s)
- Aimeric Dabin
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université de Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
3
|
Ratajczyk EJ, Šulc P, Turberfield AJ, Doye JPK, Louis AA. Coarse-grained modeling of DNA-RNA hybrids. J Chem Phys 2024; 160:115101. [PMID: 38497475 DOI: 10.1063/5.0199558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.
Collapse
Affiliation(s)
- Eryk J Ratajczyk
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
4
|
Zangi R. Breakdown of Langmuir Adsorption Isotherm in Small Closed Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38315174 PMCID: PMC10883037 DOI: 10.1021/acs.langmuir.3c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
For more than a century, monolayer adsorptions in which adsorbate molecules and adsorbing sites behave ideally have been successfully described by Langmuir's adsorption isotherm. For example, the amount of adsorbed material, as a function of concentration of the material which is not adsorbed, obeys Langmuir's equation. In this paper, we argue that this relation is valid only for macroscopic systems. However, when particle numbers of adsorbate molecules and/or adsorbing sites are small, Langmuir's model fails to describe the chemical equilibrium of the system. This is because the kinetics of forming, or the probability of observing, occupied sites arises from two-body interactions, and as such, ought to include cross-correlations between particle numbers of the adsorbate and adsorbing sites. The effect of these correlations, as reflected by deviations in predicting composition when correlations are ignored, increases with decreasing particle numbers and becomes substantial when only few adsorbate molecules, or adsorbing sites, are present in the system. In addition, any change that augments the fraction of occupied sites at equilibrium (e.g., smaller volume, lower temperature, or stronger adsorption energy) further increases the discrepancy between observed properties of small systems and those predicted by Langmuir's theory. In contrast, for large systems, these cross-correlations become negligible, and therefore when expressing properties involving two-body processes, it is possible to consider independently the concentration of each component. By applying statistical mechanics concepts, we derive a general expression of the equilibrium constant for adsorption. It is also demonstrated that in ensembles in which total numbers of particles are fixed, the magnitudes of fluctuations in particle numbers alone can predict the average chemical composition of the system. Moreover, an alternative adsorption equation, predicting the average fraction of occupied sites from the value of the equilibrium constant, is proposed. All derived relations were tested against results obtained by Monte Carlo simulations.
Collapse
Affiliation(s)
- Ronen Zangi
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Curatolo AI, Kimchi O, Goodrich CP, Krueger RK, Brenner MP. A computational toolbox for the assembly yield of complex and heterogeneous structures. Nat Commun 2023; 14:8328. [PMID: 38097568 PMCID: PMC10721878 DOI: 10.1038/s41467-023-43168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
The self-assembly of complex structures from a set of non-identical building blocks is a hallmark of soft matter and biological systems, including protein complexes, colloidal clusters, and DNA-based assemblies. Predicting the dependence of the equilibrium assembly yield on the concentrations and interaction energies of building blocks is highly challenging, owing to the difficulty of computing the entropic contributions to the free energy of the many structures that compete with the ground state configuration. While these calculations yield well known results for spherically symmetric building blocks, they do not hold when the building blocks have internal rotational degrees of freedom. Here we present an approach for solving this problem that works with arbitrary building blocks, including proteins with known structure and complex colloidal building blocks. Our algorithm combines classical statistical mechanics with recently developed computational tools for automatic differentiation. Automatic differentiation allows efficient evaluation of equilibrium averages over configurations that would otherwise be intractable. We demonstrate the validity of our framework by comparison to molecular dynamics simulations of simple examples, and apply it to calculate the yield curves for known protein complexes and for the assembly of colloidal shells.
Collapse
Affiliation(s)
- Agnese I Curatolo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ofer Kimchi
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Carl P Goodrich
- Institute of Science and Technology Austria, A-3400, Klosterneuburg, Austria
| | - Ryan K Krueger
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Dabin A, Stirnemann G. Toward a Molecular Mechanism of Complementary RNA Duplexes Denaturation. J Phys Chem B 2023. [PMID: 37389985 DOI: 10.1021/acs.jpcb.3c00908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
RNA duplexes are relatively rare but play very important biological roles. As an end-product of template-based RNA replication, they also have key implications for hypothetical primitive forms of life. Unless they are specifically separated by enzymes, these duplexes denature upon a temperature increase. However, mechanistic and kinetic aspects of RNA (and DNA) duplex thermal denaturation remain unclear at the microscopic level. We propose an in silico strategy that probes the thermal denaturation of RNA duplexes and allows for an extensive conformational space exploration along a wide temperature range with atomistic precision. We show that this approach first accounts for the strong sequence and length dependence of the duplexes melting temperature, reproducing the trends seen in the experiments and predicted by nearest-neighbor models. The simulations are then instrumental at providing a molecular picture of the temperature-induced strand separation. The textbook canonical "all-or-nothing" two-state model, very much inspired by the protein folding mechanism, can be nuanced. We demonstrate that a temperature increase leads to significantly distorted but stable structures with extensive base-fraying at the extremities, and that the fully formed duplexes typically do not form around melting. The duplex separation therefore appears as much more gradual than commonly thought.
Collapse
Affiliation(s)
- Aimeric Dabin
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
7
|
Mu ZC, Tan YL, Zhang BG, Liu J, Shi YZ. Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions. PLoS Comput Biol 2022; 18:e1010501. [PMID: 36260618 PMCID: PMC9621594 DOI: 10.1371/journal.pcbi.1010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
The three-dimensional (3D) structure and stability of DNA are essential to understand/control their biological functions and aid the development of novel materials. In this work, we present a coarse-grained (CG) model for DNA based on the RNA CG model proposed by us, to predict 3D structures and stability for both dsDNA and ssDNA from the sequence. Combined with a Monte Carlo simulated annealing algorithm and CG force fields involving the sequence-dependent base-pairing/stacking interactions and an implicit electrostatic potential, the present model successfully folds 20 dsDNAs (≤52nt) and 20 ssDNAs (≤74nt) into the corresponding native-like structures just from their sequences, with an overall mean RMSD of 3.4Å from the experimental structures. For DNAs with various lengths and sequences, the present model can make reliable predictions on stability, e.g., for 27 dsDNAs with/without bulge/internal loops and 24 ssDNAs including pseudoknot, the mean deviation of predicted melting temperatures from the corresponding experimental data is only ~2.0°C. Furthermore, the model also quantificationally predicts the effects of monovalent or divalent ions on the structure stability of ssDNAs/dsDNAs. To determine 3D structures and quantify stability of single- (ss) and double-stranded (ds) DNAs is essential to unveil the mechanisms of their functions and to further guide the production and development of novel materials. Although many DNA models have been proposed to reproduce the basic structural, mechanical, or thermodynamic properties of dsDNAs based on the secondary structure information or preset constraints, there are very few models can be used to investigate the ssDNA folding or dsDNA assembly from the sequence. Furthermore, due to the polyanionic nature of DNAs, metal ions (e.g., Na+ and Mg2+) in solutions can play an essential role in DNA folding and dynamics. Nevertheless, ab initio predictions for DNA folding in ion solutions are still an unresolved problem. In this work, we developed a novel coarse-grained model to predict 3D structures and thermodynamic stabilities for both ssDNAs and dsDNAs in monovalent/divalent ion solutions from their sequences. As compared with the extensive experimental data and available existing models, we showed that the present model can successfully fold simple DNAs into their native-like structures, and can also accurately reproduce the effects of sequence and monovalent/divalent ions on structure stability for ssDNAs including pseudoknot and dsDNAs with/without bulge/internal loops.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
- * E-mail:
| |
Collapse
|
8
|
Jones M, Ashwood B, Tokmakoff A, Ferguson AL. Determining Sequence-Dependent DNA Oligonucleotide Hybridization and Dehybridization Mechanisms Using Coarse-Grained Molecular Simulation, Markov State Models, and Infrared Spectroscopy. J Am Chem Soc 2021; 143:17395-17411. [PMID: 34644072 PMCID: PMC8554761 DOI: 10.1021/jacs.1c05219] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/29/2022]
Abstract
A robust understanding of the sequence-dependent thermodynamics of DNA hybridization has enabled rapid advances in DNA nanotechnology. A fundamental understanding of the sequence-dependent kinetics and mechanisms of hybridization and dehybridization remains comparatively underdeveloped. In this work, we establish new understanding of the sequence-dependent hybridization/dehybridization kinetics and mechanism within a family of self-complementary pairs of 10-mer DNA oligomers by integrating coarse-grained molecular simulation, machine learning of the slow dynamical modes, data-driven inference of long-time kinetic models, and experimental temperature-jump infrared spectroscopy. For a repetitive ATATATATAT sequence, we resolve a rugged dynamical landscape comprising multiple metastable states, numerous competing hybridization/dehybridization pathways, and a spectrum of dynamical relaxations. Introduction of a G:C pair at the terminus (GATATATATC) or center (ATATGCATAT) of the sequence reduces the ruggedness of the dynamics landscape by eliminating a number of metastable states and reducing the number of competing dynamical pathways. Only by introducing a G:C pair midway between the terminus and the center to maximally disrupt the repetitive nature of the sequence (ATGATATCAT) do we recover a canonical "all-or-nothing" two-state model of hybridization/dehybridization with no intermediate metastable states. Our results establish new understanding of the dynamical richness of sequence-dependent kinetics and mechanisms of DNA hybridization/dehybridization by furnishing quantitative and predictive kinetic models of the dynamical transition network between metastable states, present a molecular basis with which to understand experimental temperature jump data, and furnish foundational design rules by which to rationally engineer the kinetics and pathways of DNA association and dissociation for DNA nanotechnology applications.
Collapse
Affiliation(s)
- Michael
S. Jones
- Pritzker
School of Molecular Engineering, The University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| | - Brennan Ashwood
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrew L. Ferguson
- Pritzker
School of Molecular Engineering, The University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| |
Collapse
|
9
|
Cazenille L, Baccouche A, Aubert-Kato N. Automated exploration of DNA-based structure self-assembly networks. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210848. [PMID: 34754499 PMCID: PMC8493194 DOI: 10.1098/rsos.210848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Finding DNA sequences capable of folding into specific nanostructures is a hard problem, as it involves very large search spaces and complex nonlinear dynamics. Typical methods to solve it aim to reduce the search space by minimizing unwanted interactions through restrictions on the design (e.g. staples in DNA origami or voxel-based designs in DNA Bricks). Here, we present a novel methodology that aims to reduce this search space by identifying the relevant properties of a given assembly system to the emergence of various families of structures (e.g. simple structures, polymers, branched structures). For a given set of DNA strands, our approach automatically finds chemical reaction networks (CRNs) that generate sets of structures exhibiting ranges of specific user-specified properties, such as length and type of structures or their frequency of occurrence. For each set, we enumerate the possible DNA structures that can be generated through domain-level interactions, identify the most prevalent structures, find the best-performing sequence sets to the emergence of target structures, and assess CRNs' robustness to the removal of reaction pathways. Our results suggest a connection between the characteristics of DNA strands and the distribution of generated structure families.
Collapse
Affiliation(s)
- L. Cazenille
- Department of Information Sciences, Ochanomizu University, Tokyo, Japan
| | | | - N. Aubert-Kato
- Department of Information Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
10
|
Sengar A, Ouldridge TE, Henrich O, Rovigatti L, Šulc P. A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results. Front Mol Biosci 2021; 8:693710. [PMID: 34235181 PMCID: PMC8256390 DOI: 10.3389/fmolb.2021.693710] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The oxDNA model of Deoxyribonucleic acid has been applied widely to systems in biology, biophysics and nanotechnology. It is currently available via two independent open source packages. Here we present a set of clearly documented exemplar simulations that simultaneously provide both an introduction to simulating the model, and a review of the model's fundamental properties. We outline how simulation results can be interpreted in terms of-and feed into our understanding of-less detailed models that operate at larger length scales, and provide guidance on whether simulating a system with oxDNA is worthwhile.
Collapse
Affiliation(s)
- A. Sengar
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - T. E. Ouldridge
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - O. Henrich
- Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom
| | - L. Rovigatti
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CNR Institute of Complex Systems, Sapienza University of Rome, Rome, Italy
| | - P. Šulc
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Plata CA, Marni S, Maritan A, Bellini T, Suweis S. Statistical physics of DNA hybridization. Phys Rev E 2021; 103:042503. [PMID: 34005886 DOI: 10.1103/physreve.103.042503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Deoxyribonucleic acid (DNA) hybridization is at the heart of countless biological and biotechnological processes. Its theoretical modeling played a crucial role, since it has enabled extracting the relevant thermodynamic parameters from systematic measurements of DNA melting curves. In this article, we propose a framework based on statistical physics to describe DNA hybridization and melting in an arbitrary mixture of DNA strands. In particular, we are able to analytically derive closed expressions of the system partition functions for any number N of strings and explicitly calculate them in two paradigmatic situations: (i) a system made of self-complementary sequences and (ii) a system comprising two mutually complementary sequences. We derive the melting curve in the thermodynamic limit (N→∞) of our description, which provides a full justification for the extra entropic contribution that in classic hybridization modeling was required to correctly describe within the same framework the melting of sequences either self-complementary or not. We thus provide a thorough study comprising limit cases and alternative approaches showing how our framework can give a comprehensive view of hybridization and melting phenomena.
Collapse
Affiliation(s)
- Carlos A Plata
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, 35131 Padova, Italy
- Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
| | - Stefano Marni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI I-20090, Italy
| | - Amos Maritan
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, 35131 Padova, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI I-20090, Italy
| | - Samir Suweis
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, 35131 Padova, Italy
| |
Collapse
|
12
|
Zerze GH, Stillinger FH, Debenedetti PG. Thermodynamics of DNA Hybridization from Atomistic Simulations. J Phys Chem B 2021; 125:771-779. [PMID: 33434025 DOI: 10.1021/acs.jpcb.0c09237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studying DNA hybridization equilibrium at atomistic length scales, either via molecular dynamics (MD) or through commonly used advanced sampling approaches, is notoriously difficult. In this work, we describe an order-parameter-based advanced sampling technique to calculate the free energy of hybridization, and estimate the melting temperature of DNA oligomers at atomistic resolution. The free energy landscapes are reported as a function of a native-topology-based order parameter for the Drew-Dickerson dodecamer and for a range of DNA decamer sequences of different GC content. Our estimated melting temperatures match the experimental numbers within ±15 °C. As a test of the numerical reliability of the procedures employed, it was verified that the predicted free energy surfaces and melting temperatures of the d- and l-enantiomers of the Drew-Dickerson dodecamer were indistinguishable within numerical accuracy.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Hong F, Schreck JS, Šulc P. Understanding DNA interactions in crowded environments with a coarse-grained model. Nucleic Acids Res 2020; 48:10726-10738. [PMID: 33045749 PMCID: PMC7641764 DOI: 10.1093/nar/gkaa854] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/29/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023] Open
Abstract
Nucleic acid interactions under crowded environments are of great importance for biological processes and nanotechnology. However, the kinetics and thermodynamics of nucleic acid interactions in a crowded environment remain poorly understood. We use a coarse-grained model of DNA to study the kinetics and thermodynamics of DNA duplex and hairpin formation in crowded environments. We find that crowders can increase the melting temperature of both an 8-mer DNA duplex and a hairpin with a stem of 6-nt depending on the excluded volume fraction of crowders in solution and the crowder size. The crowding induced stability originates from the entropic effect caused by the crowding particles in the system. Additionally, we study the hybridization kinetics of DNA duplex formation and the formation of hairpin stems, finding that the reaction rate kon is increased by the crowding effect, while koff is changed only moderately. The increase in kon mostly comes from increasing the probability of reaching a transition state with one base pair formed. A DNA strand displacement reaction in a crowded environment is also studied with the model and we find that rate of toehold association is increased, with possible applications to speeding up strand displacement cascades in nucleic acid nanotechnology.
Collapse
Affiliation(s)
- Fan Hong
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - John S Schreck
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.,Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.,Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Kekic T, Barisic I. In silico modelling of DNA nanostructures. Comput Struct Biotechnol J 2020; 18:1191-1201. [PMID: 32528637 PMCID: PMC7276390 DOI: 10.1016/j.csbj.2020.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
The rise of material science and nanotechnology created a demand for a next generation of materials and procedures that can transcend the shaping of simple geometrical nano-objects. As a legacy of the technological progress made in the Human Genome Project, DNA was identified as a possible candidate. The low production costs of custom-made DNA molecules and the possibilities concerning the structural manipulation triggered significant advances in the field of DNA nanotechnology in the last decade. To facilitate the development of new DNA nanostructures and provide users an insight in less intuitive complexities and physical properties of the DNA folding, several in silico modelling tools were published. Here, we summarize the main characteristics of these specialised tools, describe the most common design principles and discuss tools and strategies used to predict the properties of DNA nanostructures.
Collapse
|
15
|
Jin L, Tan YL, Wu Y, Wang X, Shi YZ, Tan ZJ. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway. RNA (NEW YORK, N.Y.) 2019; 25:1532-1548. [PMID: 31391217 PMCID: PMC6795135 DOI: 10.1261/rna.071662.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 05/08/2023]
Abstract
RNA kissing complexes are essential for genomic RNA dimerization and regulation of gene expression, and their structures and stability are critical to their biological functions. In this work, we used our previously developed coarse-grained model with an implicit structure-based electrostatic potential to predict three-dimensional (3D) structures and stability of RNA kissing complexes in salt solutions. For extensive RNA kissing complexes, our model shows great reliability in predicting 3D structures from their sequences, and our additional predictions indicate that the model can capture the dependence of 3D structures of RNA kissing complexes on monovalent/divalent ion concentrations. Moreover, the comparisons with extensive experimental data show that the model can make reliable predictions on the stability for various RNA kissing complexes over wide ranges of monovalent/divalent ion concentrations. Notably, for RNA kissing complexes, our further analyses show the important contribution of coaxial stacking to the 3D structures and stronger stability than the corresponding kissing-interface duplexes at high salts. Furthermore, our comprehensive analyses for RNA kissing complexes reveal that the thermally folding pathway for a complex sequence is mainly determined by the relative stability of two possible folded states of kissing complex and extended duplex, which can be significantly modulated by its sequence.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yao Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xunxun Wang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Zumbro E, Witten J, Alexander-Katz A. Computational Insights into Avidity of Polymeric Multivalent Binders. Biophys J 2019; 117:892-902. [PMID: 31400918 PMCID: PMC6731389 DOI: 10.1016/j.bpj.2019.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 11/28/2022] Open
Abstract
Multivalent binding interactions are commonly found throughout biology to enhance weak monovalent binding such as between glycoligands and protein receptors. Designing multivalent polymers to bind to viruses and toxic proteins is a promising avenue for inhibiting their attachment and subsequent infection of cells. Several studies have focused on oligomeric multivalent inhibitors and how changing parameters such as ligand shape, size, linker length, and flexibility affect binding. However, experimental studies of how larger structural parameters of multivalent polymers, such as degree of polymerization, affect binding avidity to targets have mixed results, with some finding an improvement with longer polymers and some finding no effect. Here, we use Brownian dynamics simulations to provide a theoretical understanding of how the degree of polymerization affects the binding avidity of multivalent polymers. We show that longer polymers increase binding avidity to multivalent targets but reach a limit in binding avidity at high degrees of polymerization. We also show that when interacting with multiple targets simultaneously, longer polymers are able to use intertarget interactions to promote clustering and improve binding efficiency. We expect our results to narrow the design space for optimizing the structure and effectiveness of multivalent inhibitors as well as be useful to understand biological design strategies for multivalent binding.
Collapse
Affiliation(s)
- Emiko Zumbro
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jacob Witten
- Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
17
|
Bore SL, Kolli HB, Kawakatsu T, Milano G, Cascella M. Mesoscale Electrostatics Driving Particle Dynamics in Nonhomogeneous Dielectrics. J Chem Theory Comput 2019; 15:2033-2041. [DOI: 10.1021/acs.jctc.8b01201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Hima Bindu Kolli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan ,Yonezawa, Yamagata-ken 992-8510, Japan
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|
18
|
Madge J, Bourne D, Miller MA. Controlling Fragment Competition on Pathways to Addressable Self-Assembly. J Phys Chem B 2018; 122:9815-9825. [PMID: 30256103 DOI: 10.1021/acs.jpcb.8b08096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Addressable self-assembly is the formation of a target structure from a set of unique molecular or colloidal building blocks, each of which occupies a defined location in the target. The requirement that each type of building block appears exactly once in each copy of the target introduces severe restrictions on the combinations of particles and on the pathways that lead to successful self-assembly. These restrictions can limit the efficiency of self-assembly and the final yield of the product. In particular, partially formed fragments may compete with each other if their compositions overlap, since they cannot be combined. Here, we introduce a "completability" algorithm to quantify competition between self-assembling fragments and use it to deduce general principles for suppressing the effects of fragment incompatibility in the self-assembly of small addressable clusters. Competition originates from loops in the bonding network of the target structure, but loops may be needed to provide structural rigidity and thermodynamic stability. An optimal compromise can be achieved by careful choice of bonding networks and by promoting semihierarchical pathways that rule out competition between early fragments. These concepts are illustrated in simulations of self-assembly in two contrasting addressable targets of 20 unique components each.
Collapse
|
19
|
Jin L, Shi YZ, Feng CJ, Tan YL, Tan ZJ. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions. Biophys J 2018; 115:1403-1416. [PMID: 30236782 DOI: 10.1016/j.bpj.2018.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Fonseca P, Romano F, Schreck JS, Ouldridge TE, Doye JPK, Louis AA. Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly. J Chem Phys 2018; 148:134910. [PMID: 29626893 DOI: 10.1063/1.5019344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.
Collapse
Affiliation(s)
- Pedro Fonseca
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Via Torino 155, 30172 Venezia Mestre, Italy
| | - John S Schreck
- Department of Chemical Engineering, Columbia University, 500 W 120th St., New York, New York 10027, USA
| | - Thomas E Ouldridge
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
21
|
Vijaykumar A, Ouldridge TE, Ten Wolde PR, Bolhuis PG. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics. J Chem Phys 2018; 146:114106. [PMID: 28330367 DOI: 10.1063/1.4977515] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.
Collapse
Affiliation(s)
- Adithya Vijaykumar
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Thomas E Ouldridge
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | - Peter G Bolhuis
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
22
|
Ouldridge TE. The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics. NATURAL COMPUTING 2018; 17:3-29. [PMID: 29576756 PMCID: PMC5856891 DOI: 10.1007/s11047-017-9646-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Improved understanding of molecular systems has only emphasised the sophistication of networks within the cell. Simultaneously, the advance of nucleic acid nanotechnology, a platform within which reactions can be exquisitely controlled, has made the development of artificial architectures and devices possible. Vital to this progress has been a solid foundation in the thermodynamics of molecular systems. In this pedagogical review and perspective, we discuss how thermodynamics determines both the overall potential of molecular networks, and the minute details of design. We then argue that, in turn, the need to understand molecular systems is helping to drive the development of theories of thermodynamics at the microscopic scale.
Collapse
Affiliation(s)
- Thomas E. Ouldridge
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
23
|
Ghobadi AF, Jayaraman A. Effects of Polymer Conjugation on Hybridization Thermodynamics of Oligonucleic Acids. J Phys Chem B 2016; 120:9788-99. [DOI: 10.1021/acs.jpcb.6b06970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmadreza F. Ghobadi
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19711, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19711, United States
- Department
of Material Science and Engineering, University of Delaware, Newark, Delaware 19711, United States
| |
Collapse
|
24
|
Snodin BEK, Randisi F, Mosayebi M, Šulc P, Schreck JS, Romano F, Ouldridge TE, Tsukanov R, Nir E, Louis AA, Doye JPK. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J Chem Phys 2016; 142:234901. [PMID: 26093573 DOI: 10.1063/1.4921957] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na(+)] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.
Collapse
Affiliation(s)
- Benedict E K Snodin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ferdinando Randisi
- Life Sciences Interface Doctoral Training Center, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Majid Mosayebi
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Petr Šulc
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - John S Schreck
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas E Ouldridge
- Department of Mathematics, Imperial College, 180 Queen's Gate, London SW7 2AZ, United Kingdom
| | - Roman Tsukanov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Nir
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
25
|
Dannenberg F, Dunn KE, Bath J, Kwiatkowska M, Turberfield AJ, Ouldridge TE. Modelling DNA origami self-assembly at the domain level. J Chem Phys 2015; 143:165102. [DOI: 10.1063/1.4933426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frits Dannenberg
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Katherine E. Dunn
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
- Department of Electronics, University of York, York YO10 5DD, United Kingdom
| | - Jonathan Bath
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Marta Kwiatkowska
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Andrew J. Turberfield
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Thomas E. Ouldridge
- Department of Physics, University of Oxford, Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
- Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
| |
Collapse
|
26
|
Abstract
DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its rapid development and become a reliable manufacturing technology.
Collapse
|
27
|
Šulc P, Romano F, Ouldridge TE, Doye JPK, Louis AA. A nucleotide-level coarse-grained model of RNA. J Chem Phys 2015; 140:235102. [PMID: 24952569 DOI: 10.1063/1.4881424] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.
Collapse
Affiliation(s)
- Petr Šulc
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas E Ouldridge
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
28
|
Ding Y, Mittal J. Insights into DNA-mediated interparticle interactions from a coarse-grained model. J Chem Phys 2014; 141:184901. [DOI: 10.1063/1.4900891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yajun Ding
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
29
|
Perkett MR, Hagan MF. Using Markov state models to study self-assembly. J Chem Phys 2014; 140:214101. [PMID: 24907984 PMCID: PMC4048447 DOI: 10.1063/1.4878494] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/30/2014] [Indexed: 11/14/2022] Open
Abstract
Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude.
Collapse
Affiliation(s)
- Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| |
Collapse
|
30
|
Hinckley DM, Freeman GS, Whitmer JK, de Pablo JJ. An experimentally-informed coarse-grained 3-Site-Per-Nucleotide model of DNA: structure, thermodynamics, and dynamics of hybridization. J Chem Phys 2014; 139:144903. [PMID: 24116642 DOI: 10.1063/1.4822042] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A new 3-Site-Per-Nucleotide coarse-grained model for DNA is presented. The model includes anisotropic potentials between bases involved in base stacking and base pair interactions that enable the description of relevant structural properties, including the major and minor grooves. In an improvement over available coarse-grained models, the correct persistence length is recovered for both ssDNA and dsDNA, allowing for simulation of non-canonical structures such as hairpins. DNA melting temperatures, measured for duplexes and hairpins by integrating over free energy surfaces generated using metadynamics simulations, are shown to be in quantitative agreement with experiment for a variety of sequences and conditions. Hybridization rate constants, calculated using forward-flux sampling, are also shown to be in good agreement with experiment. The coarse-grained model presented here is suitable for use in biological and engineering applications, including nucleosome positioning and DNA-templated engineering.
Collapse
Affiliation(s)
- Daniel M Hinckley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
31
|
Ouldridge TE. Inferring bulk self-assembly properties from simulations of small systems with multiple constituent species and small systems in the grand canonical ensemble. J Chem Phys 2013; 137:144105. [PMID: 23061837 DOI: 10.1063/1.4757267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this paper, we generalize a methodology [T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Phys.: Condens. Matter 22, 104102 (2010)] for dealing with the inference of bulk properties from small simulations of self-assembling systems of characteristic finite size. In particular, schemes for extrapolating the results of simulations of a single self-assembling object to the bulk limit are established in three cases: for assembly involving multiple particle species, for systems with one species localized in space and for simulations in the grand canonical ensemble. Furthermore, methodologies are introduced for evaluating the accuracy of these extrapolations. Example systems demonstrate that differences in cluster concentrations between simulations of a single self-assembling structure and bulk studies of the same model under identical conditions can be large, and that convergence on bulk results as system size is increased can be slow and non-trivial.
Collapse
Affiliation(s)
- Thomas E Ouldridge
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
32
|
Romano F, Hudson A, Doye JPK, Ouldridge TE, Louis AA. The effect of topology on the structure and free energy landscape of DNA kissing complexes. J Chem Phys 2012; 136:215102. [PMID: 22697570 DOI: 10.1063/1.4722203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use a recently developed coarse-grained model for DNA to study kissing complexes formed by hybridization of complementary hairpin loops. The binding of the loops is topologically constrained because their linking number must remain constant. By studying systems with linking numbers -1, 0, or 1 we show that the average number of interstrand base pairs is larger when the topology is more favourable for the right-handed wrapping of strands around each other. The thermodynamic stability of the kissing complex also decreases when the linking number changes from -1 to 0 to 1. The structures of the kissing complexes typically involve two intermolecular helices that coaxially stack with the hairpin stems at a parallel four-way junction.
Collapse
Affiliation(s)
- Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Šulc P, Romano F, Ouldridge TE, Rovigatti L, Doye JPK, Louis AA. Sequence-dependent thermodynamics of a coarse-grained DNA model. J Chem Phys 2012; 137:135101. [DOI: 10.1063/1.4754132] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Ouldridge TE, Louis AA, Doye JPK. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 2011; 134:085101. [PMID: 21361556 DOI: 10.1063/1.3552946] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We explore in detail the structural, mechanical, and thermodynamic properties of a coarse-grained model of DNA similar to that recently introduced in a study of DNA nanotweezers [T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, Phys. Rev. Lett. 134, 178101 (2010)]. Effective interactions are used to represent chain connectivity, excluded volume, base stacking, and hydrogen bonding, naturally reproducing a range of DNA behavior. The model incorporates the specificity of Watson-Crick base pairing, but otherwise neglects sequence dependence of interaction strengths, resulting in an "average base" description of DNA. We quantify the relation to experiment of the thermodynamics of single-stranded stacking, duplex hybridization, and hairpin formation, as well as structural properties such as the persistence length of single strands and duplexes, and the elastic torsional and stretching moduli of double helices. We also explore the model's representation of more complex motifs involving dangling ends, bulged bases and internal loops, and the effect of stacking and fraying on the thermodynamics of the duplex formation transition.
Collapse
|
35
|
Ouldridge TE, Louis AA, Doye JPK. DNA nanotweezers studied with a coarse-grained model of DNA. PHYSICAL REVIEW LETTERS 2010; 104:178101. [PMID: 20482144 DOI: 10.1103/physrevlett.104.178101] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Indexed: 05/29/2023]
Abstract
We introduce a coarse-grained rigid nucleotide model of DNA that reproduces the basic thermodynamics of short strands, duplex hybridization, single-stranded stacking, and hairpin formation, and also captures the essential structural properties of DNA: the helical pitch, persistence length, and torsional stiffness of double-stranded molecules, as well as the comparative flexibility of unstacked single strands. We apply the model to calculate the detailed free-energy landscape of one full cycle of DNA "tweezers," a simple machine driven by hybridization and strand displacement.
Collapse
Affiliation(s)
- Thomas E Ouldridge
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, United Kingdom
| | | | | |
Collapse
|