1
|
Tannoury L, Paul W. Nanoscopically Confined 1,4-Polybutadiene Melts: Exploring Confinement by Alumina Nanorod and Nanopore Systems. J Phys Chem B 2024; 128:10515-10524. [PMID: 39403952 PMCID: PMC11514029 DOI: 10.1021/acs.jpcb.4c04553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
We present molecular dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PBD) in contact with curved alumina surfaces. We contrast the behavior of PBD infiltrated into alumina pores with a curvature radius of about three times the radius of gyration of the chains to its behavior next to a melt dispersed alumina rod of equal absolute curvature. These confinement types represent situations occurring in polymer melts loaded with nanoparticles due to nanoparticle aggregation. While there are observable differences in structure and dynamics due to the different types of geometric confinement, the main effects stem from the strong attraction of PBD to the alumina surfaces. This strong attraction leads to a deformation of the chains in contact to the surfaces. We focus on temperatures well above the bulk glass transition temperature, but even at these high temperatures, the layers next to the alumina surfaces show glass-like relaxation behavior. We analyze the signature of this glassy behavior for neutron scattering or nuclear magnetic resonances experiments.
Collapse
Affiliation(s)
- L. Tannoury
- Institüt für Physik, Martin-Luther-Universität, D-06099 Halle, Germany
| | - W. Paul
- Institüt für Physik, Martin-Luther-Universität, D-06099 Halle, Germany
| |
Collapse
|
2
|
Wu F, Yang X, Wang C, Zhao B, Luo MB. Langevin Dynamics Study on the Driven Translocation of Polymer Chains with a Hairpin Structure. Molecules 2024; 29:4042. [PMID: 39274890 PMCID: PMC11397710 DOI: 10.3390/molecules29174042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/16/2024] Open
Abstract
The hairpin structure is a common and fundamental secondary structure in macromolecules. In this work, the process of the translocation of a model polymer chain with a hairpin structure is studied using Langevin dynamics simulations. The simulation results show that the dynamics of hairpin polymer translocation through a nanopore are influenced by the hairpin structure. Hairpin polymers can be classified into three categories, namely, linear-like, unsteady hairpin, and steady hairpin, according to the interaction with the stem structure. The translocation behavior of linear-like polymers is similar to that of a linear polymer chain. The time taken for the translocation of unsteady hairpin polymers is longer than that for a linear chain because it takes a long time to unfold the hairpin structure, and this time increases with stem interaction and decreases with the driving force. The translocation of steady hairpin polymers is distinct, especially under a weak driving force; the difficulty of unfolding the hairpin structure leads to a low translocation probability and a short translocation time. The translocation behavior of hairpin polymers can be explained by the theory of the free-energy landscape.
Collapse
Affiliation(s)
- Fan Wu
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Xiao Yang
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Chao Wang
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Bin Zhao
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Upadhyay G, Kapri R, Chaudhuri A. Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:23. [PMID: 38573533 DOI: 10.1140/epje/s10189-024-00417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
We investigate the translocation of a semiflexible polymer through extended patterned pores using Langevin dynamics simulations, specifically focusing on the influence of a time-dependent driving force. Our findings reveal that, akin to its flexible counterpart, a rigid chain-like molecule translocates faster when subjected to an oscillating force than a constant force of equivalent average magnitude. The enhanced translocation is strongly correlated with the stiffness of the polymer and the stickiness of the pores. The arrangement of the pores plays a pivotal role in translocation dynamics, deeply influenced by the interplay between polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness, the oscillating force introduces significant variations in the translocation time distributions based on segment sizes and orientations. On the basis of these insights, we propose a sequencing approach that harnesses distinct pore surface properties that are capable of accurately predicting sequences in heteropolymers with diverse bending rigidities.
Collapse
Affiliation(s)
- Gokul Upadhyay
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, 140306, India
| | - Rajeev Kapri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, 140306, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, 140306, India.
| |
Collapse
|
4
|
Upadhyay G, Kapri R, Chaudhuri A. Gain reversal in the translocation dynamics of a semiflexible polymer through a flickering pore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185101. [PMID: 38262064 DOI: 10.1088/1361-648x/ad21a9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
We study the driven translocation of a semiflexible polymer through an attractive extended pore with a periodically oscillating width. Similar to its flexible counterpart, a stiff polymer translocates through an oscillating pore more quickly than a static pore whose width is equal to the oscillating pore's mean width. This efficiency quantified as a gain in the translocation time, highlights a considerable dependence of the translocation dynamics on the stiffness of the polymer and the attractive nature of the pore. The gain characteristics for various polymer stiffness exhibit a trend reversal when the stickiness of the pore is changed. The gain reduces with increasing stiffness for a lower attractive strength of the pore, whereas it increases with increasing stiffness for higher attractive strengths. Such a dependence leads to the possibility of a high degree of robust selectivity in the translocation process.
Collapse
Affiliation(s)
- Gokul Upadhyay
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| | - Rajeev Kapri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| |
Collapse
|
5
|
Chiarantoni P, Micheletti C. Linear Catenanes in Channel Confinement. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Expansion of Single Chains Released from a Spherical Cavity. Polymers (Basel) 2022; 15:polym15010198. [PMID: 36616547 PMCID: PMC9824584 DOI: 10.3390/polym15010198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
A two-stage model is developed to explain the phenomena of chain expansion, released from a confining cavity. In the first stage, the chain is assumed to expand as a sphere, while in the second stage it expands like a coil. The kinetic equations for the variation of chain size are derived in the two stages by balancing the rate of the free energy change with the rate of the energy dissipation. Langevin dynamics simulations are then performed to examine the theory. We find that the expansion process is dominated by the second stage and the evolution of chain size follows, mainly, the predicted curve for coil expansion, which depends on the chain length and is not sensitive to the confining volume fraction. It permits to define the expansion time for the process. Further study reveals that the chain does undergo a spherical expansion in the first stage with the characteristic time much shorter than the one for the second stage. As a consequence, the first-stage variation of chain size can be regarded as an add-on to the principal curve of expansion designated by the second stage. The scaling behaviors and the associated scaling exponents are analyzed in details. The simulation results well support the theory.
Collapse
|
7
|
Sharma A, Kapri R, Chaudhuri A. Driven translocation of a semiflexible polymer through a conical channel in the presence of attractive surface interactions. Sci Rep 2022; 12:19081. [PMID: 36351960 PMCID: PMC9646819 DOI: 10.1038/s41598-022-21845-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
We study the translocation of a semiflexible polymer through a conical channel with attractive surface interactions and a driving force which varies spatially inside the channel. Using the results of the translocation dynamics of a flexible polymer through an extended channel as control, we first show that the asymmetric shape of the channel gives rise to non-monotonic features in the total translocation time as a function of the apex angle of the channel. The waiting time distributions of individual monomer beads inside the channel show unique features strongly dependent on the driving force and the surface interactions. Polymer stiffness results in longer translocation times for all angles of the channel. Further, non-monotonic features in the translocation time as a function of the channel angle changes substantially as the polymer becomes stiffer, which is reflected in the changing features of the waiting time distributions. We construct a free energy description of the system incorporating entropic and energetic contributions in the low force regime to explain the simulation results.
Collapse
Affiliation(s)
- Andri Sharma
- grid.458435.b0000 0004 0406 1521Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Mohali, 140306 Punjab India
| | - Rajeev Kapri
- grid.458435.b0000 0004 0406 1521Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Mohali, 140306 Punjab India
| | - Abhishek Chaudhuri
- grid.458435.b0000 0004 0406 1521Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Mohali, 140306 Punjab India
| |
Collapse
|
8
|
Fiasconaro A, Díez-Señorans G, Falo F. End-pulled polymer translocation through a many-body flexible pore. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Amici G, Caraglio M, Orlandini E, Micheletti C. Topological Friction and Relaxation Dynamics of Spatially Confined Catenated Polymers. ACS Macro Lett 2022; 11:1-6. [PMID: 35574798 PMCID: PMC8772382 DOI: 10.1021/acsmacrolett.1c00594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
We study catenated ring polymers confined inside channels and slits with Langevin dynamics simulations and address how the contour position and size of the interlocked or physically linked region evolve with time. We show that the catenation constraints generate a drag, or topological friction, that couples the contour motion of the interlocked regions. Notably, the coupling strength decreases as the interlocking is made tighter, but also shorter, by confinement. Though the coupling strength differs for channel and slit confinement, the data outline a single universal curve when plotted against the size of the linked region. Finally, we study how the relaxation kinetics changes after one of the rings is cut open and conclude that considering interlocked circular polymers is key for isolating the manifestations of topological friction. The results ought to be relevant for linked biomolecules in experimental or biological confining conditions.
Collapse
Affiliation(s)
- Giulia Amici
- Scuola
Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Michele Caraglio
- Institut
für Theoretische Physik, Universität
Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Enzo Orlandini
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, I-35100 Padova, Italy
| | - Cristian Micheletti
- Scuola
Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
10
|
Rusková R, Račko D. Channels with Helical Modulation Display Stereospecific Sensitivity for Chiral Superstructures. Polymers (Basel) 2021; 13:3726. [PMID: 34771282 PMCID: PMC8588256 DOI: 10.3390/polym13213726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 01/03/2023] Open
Abstract
By means of coarse-grained molecular dynamics simulations, we explore chiral sensitivity of confining spaces modelled as helical channels to chiral superstructures represented by polymer knots. The simulations show that helical channels exhibit stereosensitivity to chiral knots localized on linear chains by effect of external pulling force and also to knots embedded on circular chains. The magnitude of the stereoselective effect is stronger for torus knots, the effect is weaker in the case of twist knots, and amphichiral knots do exhibit no chiral effects. The magnitude of the effect can be tuned by the so-far investigated radius of the helix, the pitch of the helix and the strength of the pulling force. The model is aimed to simulate and address a range of practical situations that may occur in experimental settings such as designing of nanotechnological devices for the detection of topological state of molecules, preparation of new gels with tailor made stereoselective properties, or diffusion of knotted DNA in biological conditions.
Collapse
Affiliation(s)
- Renáta Rusková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 3, 84541 Bratislava, Slovakia;
- Department of Plastics, Rubber and Fibres (IPM FCFT), Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Dušan Račko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 3, 84541 Bratislava, Slovakia;
| |
Collapse
|
11
|
Chen X, Chen J, Zhuo BY, Yang X, Luo MB. Simulation study for the pulling translocation of a polymer globule. Polym J 2021. [DOI: 10.1038/s41428-021-00502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Hsiao PY, Chen WY. A general theory of polymer ejection tested in a quasi two-dimensional space. Sci Rep 2021; 11:14721. [PMID: 34282179 PMCID: PMC8289874 DOI: 10.1038/s41598-021-94054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
A general ejection theory of polymer is developed in a two- and three-dimensional space. A polymer is confined initially in a cavity and ejects spontaneously to the outer space through a nanopore channel without the help of any external stimulus. A reflective wall boundary is set at the pore entrance to prevent the falling of the head monomer of chain into the cavity. Three stages are distinguished in a process: (1) an entering stage, in which the head monomer enters the pore to search for a way to traverse the pore channel, (2) a main ejection stage, in which the chain body is transported from the cavity to the outer space, (3) a leaving stage, in which the tail monomer passes through and leaves the pore channel. Depending on the number of the monomers remaining in the cavity, the main ejection stage can be divided into the confined and the non-confined stages. The non-confined stage can be further split into the thermal escape and the entropic pulling stages. The Onsager’s variational principle is applied to derive the kinetics equation of ejection. The escape time is calculated from the corresponding Kramers’ escape problem. Extensive molecular dynamics simulations are then performed in a quasi two-dimensional space to verify the theory. The variation of the ejection speed is carefully examined. The decreasing behavior of the number of monomers in the cavity is studied in details. The scaling properties of the spending time at each processing stage are investigated systematically by varying the chain length, the cavity diameter, and the initial volume fraction of chain. The results of simulation support firmly the predictions of the theory, cross-checked in the studies of various topics. In combining with the previous investigations in the three-dimensional space, the generalized theory is very robust, able to explain the two seemly different phenomena, polymer ejection and polymer translocation, together under the same theoretical framework in the two space dimensions.
Collapse
Affiliation(s)
- Pai-Yi Hsiao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China. .,Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Wei-Yei Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
13
|
Abstract
The potential of a double nanopore system to determine DNA barcodes has been demonstrated experimentally. By carrying out Brownian dynamics simulation on a coarse-grained model DNA with protein tag (barcodes) at known locations along the chain backbone, we demonstrate that due to large variation of velocities of the chain segments between the tags, it is inevitable to under/overestimate the genetic lengths from the experimental current blockade and time of flight data. We demonstrate that it is the tension propagation along the chain's backbone that governs the motion of the entire chain and is the key element to explain the non uniformity and disparate velocities of the tags and DNA monomers under translocation that introduce errors in measurement of the length segments between protein tags. Using simulation data we further demonstrate that it is important to consider the dynamics of the entire chain and suggest methods to accurately decipher barcodes. We introduce and validate an interpolation scheme using simulation data for a broad distribution of tag separations and suggest how to implement the scheme experimentally.
Collapse
|
14
|
Seth S, Bhattacharya A. Polymer escape through a three dimensional double-nanopore system. J Chem Phys 2021; 153:104901. [PMID: 32933266 DOI: 10.1063/5.0015310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the escape dynamics of a double-stranded DNA (dsDNA) through an idealized double nanopore geometry subject to two equal and opposite forces (tug-of-war) using Brownian dynamics (BD) simulation. In addition to the geometrical restrictions imposed on the cocaptured dsDNA segment in between the pores, the presence of tug-of-war forces at each pore results in a variation of the local chain stiffness for the segment of the chain in between the pores, which increases the overall stiffness of the chain. We use the BD simulation results to understand how the intrinsic chain stiffness and the tug-of-war forces affect the escape dynamics by monitoring the local chain persistence length ℓp, the residence time of the individual monomers W(m) in the nanopores, and the chain length dependence of the escape time ⟨τ⟩ and its distribution. Finally, we generalize the scaling theory for the unbiased single nanopore translocation for a fully flexible chain for the escape of a semi-flexible chain through a double nanopore in the presence of tug-of-war forces. We establish that the stiffness dependent part of the escape time is approximately independent of the translocation mechanism so that ⟨τ⟩∼ℓp 2/D+2, and therefore, the generalized escape time for a semi-flexible chain can be written as ⟨τ⟩=ANαℓp 2/D+2. We use the BD simulation results to compare the predictions of the scaling theory. Our numerical studies supplemented by scaling analysis provide fundamental insights to design new experiments where a dsDNA moves slowly through a series of graphene nanopores.
Collapse
Affiliation(s)
- Swarnadeep Seth
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| |
Collapse
|
15
|
Sun LZ, Cao WP, Wang CH, Xu X. The translocation dynamics of the polymer through a conical pore: Non-stuck, weak-stuck, and strong-stuck modes. J Chem Phys 2021; 154:054903. [PMID: 33557527 DOI: 10.1063/5.0033689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The external voltage-driven polymer translocation through a conical pore (with a large opening at the entry and a small tip at the exit) is studied by using the Langevin dynamics simulation in this paper. The entire translocation process is divided into an approaching stage and a threading stage. First, the approaching stage starts from the polymer entering the large opening and ends up at a terminal monomer reaching the pore tip. In this stage, the polymer will undergo the conformation adjustment to fit the narrowed cross-sectional area of the pore, leading to three approaching modes: the non-stuck mode with a terminal monomer arriving at the pore tip smoothly, the weak-stuck mode for the polymer stuck inside the pore for a short duration with minor conformational adjustments, and the strong-stuck mode with major conformational changes and a long duration. The approaching times (the duration of the approaching stage) of the three approaching modes show different behavior as a function of the pore apex angle. Second, the threading stage describes that the polymer threads through the pore tip with a linear fashion. In this stage, an increase in the apex angle causes the reduction of the threading time (the duration of the threading stage) due to the increase in the driving force with the apex angle at the tip. Moreover, we also find that with the increase in the apex angle or the polymer length, the polymer threading dynamics will change from the quasi-equilibrium state to the non-equilibrium state.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Wei-Ping Cao
- Institute of Optoelectronic Technology, Lishui University, Lishui 323000, China
| | - Chang-Hui Wang
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| |
Collapse
|
16
|
Ghosh B, Sarabadani J, Chaudhury S, Ala-Nissila T. Pulling a folded polymer through a nanopore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:015101. [PMID: 32906093 DOI: 10.1088/1361-648x/abb687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the translocation dynamics of a folded linear polymer which is pulled through a nanopore by an external force. To this end, we generalize the iso-flux tension propagation theory for end-pulled polymer translocation to include the case of two segments of the folded polymer traversing simultaneously trough the pore. Our theory is extensively benchmarked with corresponding molecular dynamics (MD) simulations. The translocation process for a folded polymer can be divided into two main stages. In the first stage, both branches are traversing the pore and their dynamics is coupled. If the branches are not of equal length, there is a second stage where translocation of the shorter branch has been completed. Using the assumption of equal monomer flux of both branches confirmed by MD simulations, we analytically derive the equations of motion for both branches and characterize the translocation dynamics in detail from the average waiting time and its scaling form.
Collapse
Affiliation(s)
- Bappa Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Jalal Sarabadani
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Tapio Ala-Nissila
- Department of Applied Physics and QTF Center of Excellence, Aalto University, PO Box 11000, FI-00076 Aalto, Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
17
|
Scaling Theory of a Polymer Ejecting from a Cavity into a Semi-Space. Polymers (Basel) 2020; 12:polym12123014. [PMID: 33339450 PMCID: PMC7766115 DOI: 10.3390/polym12123014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
A two-stage model is developed in order to understand the scaling behaviors of single polymers ejecting from a spherical cavity through a nanopore. The dynamics of ejection is derived by balancing the free energy change with the energy dissipation during a process. The ejection velocity is found to vary with the number of monomers in the cavity, m, as mz1/(Nx1D3z1) at the confined stage, and it turns to be m−z2 at the non-confined stage, where N is the chain length and D the cavity diameter. The exponents are shown to be z1=(3ν−1)−1, z2=2ν and x1=1/3, with ν being the Flory exponent. The profile of the velocity is carefully verified by performing Langevin dynamics simulations. The simulations further reveal that, at the starting point, the decreasing of m can be stalled for a good moment. It suggests the existence of a pre-stage that can be explained by using the concept of a classical nucleation theory. By trimming the pre-stage, the ejection time are properly studied by varying N, D, and ϕ0 (the initial volume fraction). The scaling properties of the nucleation time are also analyzed. The results fully support the predictions of the theory. The physical pictures are given for various ejection conditions that cover the entire parameter space.
Collapse
|
18
|
Hsiao PY. Translocation of a Polyelectrolyte through a Nanopore in the Presence of Trivalent Counterions: A Comparison with the Cases in Monovalent and Divalent Salt Solutions. ACS OMEGA 2020; 5:19805-19819. [PMID: 32803076 PMCID: PMC7424739 DOI: 10.1021/acsomega.0c02647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/10/2020] [Indexed: 05/08/2023]
Abstract
A polyelectrolyte threading through a nanopore in a trivalent salt solution is investigated by means of molecular dynamics simulations under a reflective wall boundary. By varying the chain length N and the strength E of the driving electric field applied inside the pore, the translocation time is carefully calculated to get rid of the bouncing effect because of the boundary. The results are analyzed under the scaling form ⟨τ⟩ ∼ N α E -δ and four driving force regimes; namely, the unbiased, the weakly driven, the strongly driven trumpet, and the strongly driven isoflux regime, are distinguished. The exponents are calculated in each regime and compared with the cases in the monovalent and divalent salt solutions. Owing to strong condensation of counter ions, the changes of the exponents in the force regimes are found to be nontrivial. A large increase in translocation time can be, however, achieved as the driving field is weak. The variations of the chain size, the ion condensation, and the effective chain charge show that the process is proceeded in a quasi-equilibrium way in the unbiased regime and deviated to exhibit strong nonequilibrium characteristics as E increases. Several astonishing scaling behaviors of the waiting time function, the translocation velocity, and the diffusion properties are discovered in the study. The results provide deep insights into the phenomena of polyelectrolyte translocation in various salt solutions at different driving forces.
Collapse
Affiliation(s)
- Pai-Yi Hsiao
- Department
of Engineering and System Science, National
Tsing Hua University, Hsinchu, Taiwan 30013, R. O. C
- Institute
of Nuclear Engineering and Science, National
Tsing Hua University, Hsinchu, Taiwan 30013, R. O. C
- ,
| |
Collapse
|
19
|
Sarabadani J, Buyukdagli S, Ala-Nissila T. Pulling a DNA molecule through a nanopore embedded in an anionic membrane: tension propagation coupled to electrostatics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:385101. [PMID: 32408289 DOI: 10.1088/1361-648x/ab9342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
We consider the influence of electrostatic forces on driven translocation dynamics of a flexible polyelectrolyte being pulled through a nanopore by an external force on the head monomer. To this end, we augment the iso-flux tension propagation theory with electrostatics for a negatively charged biopolymer pulled through a nanopore embedded in a similarly charged anionic membrane. We show that in the realistic case of a single-stranded DNA molecule, dilute salt conditions characterized by weak charge screening, and a negatively charged membrane, the translocation dynamics is unexpectedly accelerated despite the presence of large repulsive electrostatic interactions between the polymer coil on thecisside and the charged membrane. This is due to the rapid release of the electrostatic potential energy of the coil during translocation, leading to an effectively attractive force that assists end-driven translocation. The speedup results in non-monotonic polymer length and membrane charge dependence of the exponentαcharacterizing the translocation timeτ∝N0αof the polymer with lengthN0. In the regime of long polymersN0 ≳ 500, the translocation exponent exceeds its upper limitα= 2 previously observed for the same system without electrostatic interactions.
Collapse
Affiliation(s)
- Jalal Sarabadani
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran
| | | | - Tapio Ala-Nissila
- Department of Applied Physics and QTF Center of Excellence, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
20
|
Bhattacharya A, Seth S. Tug of war in a double-nanopore system. Phys Rev E 2020; 101:052407. [PMID: 32575312 DOI: 10.1103/physreve.101.052407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/30/2020] [Indexed: 02/02/2023]
Abstract
We simulate a tug-of-war (TOW) scenario for a model double-stranded DNA threading through a double nanopore (DNP) system. The DNA, simultaneously captured at both pores, is subject to two equal and opposite forces -f[over ⃗]_{L}=f[over ⃗]_{R} (TOW), where f[over ⃗]_{L} and f[over ⃗]_{R} are the forces applied to the left and the right pore, respectively. Even though the net force on the DNA polymer Δf[over ⃗]_{LR}=f[over ⃗]_{L}+f[over ⃗]_{R}=0, the mean first passage time (MFPT) 〈τ〉 depends on the magnitude of the TOW forces |f_{L}|=|f_{R}|=f_{LR}. We qualitatively explain this dependence of 〈τ〉 on f_{LR} from the known results for the single-pore translocation of a triblock copolymer A-B-A with ℓ_{pB}>ℓ_{pA}, where ℓ_{pA} and ℓ_{pB} are the persistence length of the A and B segments, respectively. We demonstrate that the time of flight of a monomer with index m [〈τ_{LR}(m)〉] from one pore to the other exhibits quasiperiodic structure commensurate with the distance between the pores d_{LR}. Finally, we study the situation where we offset the TOW biases so that Δf[over ⃗]_{LR}=f[over ⃗]_{L}+f[over ⃗]_{R}≠0, and qualitatively reproduce the experimental result of the dependence of the MFPT on Δf[over ⃗]_{LR}. We demonstrate that, for a moderate bias, the MFPT for the DNP system for a chain length N follows the same scaling ansatz as that for the single nanopore, 〈τ〉=(AN^{1+ν}+η_{pore}N)(Δf_{LR})^{-1}, where η_{pore} is the pore friction, which enables us to estimate 〈τ〉 for a long chain. Our Brownian dynamics simulation studies provide fundamental insights and valuable information about the details of the translocation speed obtained from 〈τ_{LR}(m)〉, and accuracy of the translation of the data obtained in the time domain to units of genomic distances.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Swarnadeep Seth
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| |
Collapse
|
21
|
Huang HC, Hsiao PY. Scaling Behaviors of a Polymer Ejected from a Cavity through a Small Pore. PHYSICAL REVIEW LETTERS 2019; 123:267801. [PMID: 31951464 DOI: 10.1103/physrevlett.123.267801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Langevin dynamics simulations are performed to investigate ejection dynamics of spherically confined flexible polymers through a pore. By varying the chain length N and the initial volume fraction ϕ_{0} of the monomers, two scaling behaviors for the ejection velocity v on the monomer number m in the cavity are obtained: v∼m^{1.25}ϕ_{0}^{1.25}/N^{1.6} for large m and v∼m^{-1.4} as m is small. A robust scaling theory is developed by dividing the process into the confined and the nonconfined stages, and the dynamical equation is derived via the study of energy dissipation. After trimming the prior stage related to the escape of the head monomer across the pore, the evolution of m is shown to be well described by the scaling theory. The ejection time exhibits two proper scaling behaviors: N^{(2/3ν)+y_{1}}ϕ_{0}^{-(2/3ν)} and N^{2+y_{2}} under the large and small ϕ_{0} or N conditions, respectively, where y_{1}=1/3, y_{2}=1-ν, and ν is the Flory exponent.
Collapse
Affiliation(s)
- Hao-Chun Huang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China
| | - Pai-Yi Hsiao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China
| |
Collapse
|
22
|
Fu Y, Wu F, Huang JH, Chen YC, Luo MB. Simulation Study on the Extension of Semi-flexible Polymer Chains in Cylindrical Channel. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2291-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Kwon S, Sung BJ. Heterogeneous kinetics of the loop formation of a single polymer chain in crowded and disordered media. Phys Rev E 2019; 100:042501. [PMID: 31770886 DOI: 10.1103/physreve.100.042501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 11/06/2022]
Abstract
The cytoplasmic volume of cells is occupied and crowded by a variety of macromolecules, such as proteins and cytoskeleton structures. Such diverse macromolecules make the cell cytoplasm not only structurally heterogeneous but also dynamically heterogeneous: Some macromolecules may diffuse freely inside cell cytoplasm at certain timescales while others hardly diffuse. Studies on the effects of the dynamic heterogeneity on reaction kinetics have been limited even though the effects of the crowdedness and structural heterogeneity were investigated extensively. In this study, we employ a simple model of mixtures of mobile and immobile matrix particles, tune the degree of dynamic heterogeneity by changing the fraction of immobile matrix particles, and investigate reaction kinetics in such heterogeneous media. We employ the loop formation of a single polymer chain as a model reaction and perform Langevin dynamics simulations. We find that the free-energy barrier of the loop formation is decreased as the systems become more crowded with matrix particles. But the free-energy barrier is not sensitive to the dynamic heterogeneity. As dynamic heterogeneity increases with an increase in the fraction of immobile matrix particles, however, the diffusivity of the system decreases significantly. The decrease in the diffusion (due to the dynamic heterogeneity) and the decrease in the free-energy barrier (due to the crowdedness) lead together to a complicated trend of the loop formation kinetics. As the volume fraction of immobile matrix particles reaches a critical value at the percolation transition, the reaction kinetics becomes significantly heterogeneous and the survival probability distribution of the chain loop formation becomes stretched-exponential. We also illustrate that the heterogeneous reaction rate near the percolation transition relates closely to the structures of local pores in which the polymer is located.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
24
|
Luo MB, Wu F, Zhang S, Sun LZ. Effect of temperature on the escape of charged polymer chain from a repulsive nanopore. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1629435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Meng-Bo Luo
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fan Wu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shuang Zhang
- College of Science, Beibu Gulf University, Qinzhou, People’s Republic of China
| | - Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| |
Collapse
|
25
|
Liu X, Zhang Y, Nagel R, Reisner W, Dunbar WB. Controlling DNA Tug-of-War in a Dual Nanopore Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901704. [PMID: 31192541 DOI: 10.1002/smll.201901704] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Methods for reducing and directly controlling the speed of DNA through a nanopore are needed to enhance sensing performance for direct strand sequencing and detection/mapping of sequence-specific features. A method is created for reducing and controlling the speed of DNA that uses two independently controllable nanopores operated with an active control logic. The pores are positioned sufficiently close to permit cocapture of a single DNA by both pores. Once cocapture occurs, control logic turns on constant competing voltages at the pores leading to a "tug-of-war" whereby opposing forces are applied to regions of the molecules threading through the pores. These forces exert both conformational and speed control over the cocaptured molecule, removing folds and reducing the translocation rate. When the voltages are tuned so that the electrophoretic force applied to both pores comes into balance, the life time of the tug-of-war state is limited purely by diffusive sliding of the DNA between the pores. A tug-of-war state is produced on 76.8% of molecules that are captured with a maximum two-order of magnitude increase in average pore translocation time relative to the average time for single-pore translocation. Moreover, the translocation slow-down is quantified as a function of voltage tuning and it is shown that the slow-down is well described by a first passage analysis for a 1D subdiffusive process. The ionic current of each nanopore provides an independent sensor that synchronously measures a different region of the same molecule, enabling sequential detection of physical labels, such as monostreptavidin tags. With advances in devices and control logic, future dual-pore applications include genome mapping and enzyme-free sequencing.
Collapse
Affiliation(s)
- Xu Liu
- Ontera, Inc., Santa Cruz, CA, 95060, USA
| | - Yuning Zhang
- Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
| | | | - Walter Reisner
- Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
| | | |
Collapse
|
26
|
Giunta G, Carbone P. Cross-over in the dynamics of polymer confined between two liquids of different viscosity. Interface Focus 2019; 9:20180074. [PMID: 31065342 PMCID: PMC6501349 DOI: 10.1098/rsfs.2018.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 11/12/2022] Open
Abstract
Using molecular dynamics simulations, we analysed the polymer dynamics of chains of different molecular weights entrapped at the interface between two immiscible liquids. We showed that on increasing the viscosity of one of the two liquids the dynamic behaviour of the chain changes from a Zimm-like dynamics typical of dilute polymer solutions to a Rouse-like dynamics where hydrodynamic interactions are screened. We observed that when the polymer is in contact with a high viscosity liquid, the number of solvent molecules close to the polymer beads is reduced and ascribed the screening effect to this reduced number of polymer-solvent contacts. For the longest chain simulated, we calculated the distribution of loop length and compared the results with the theoretical distribution developed for solid/liquid interfaces. We showed that the polymer tends to form loops (although flat against the interface) and that the theory works reasonably well also for liquid/liquid interfaces.
Collapse
Affiliation(s)
- Giuliana Giunta
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
27
|
Agarwal T, Manjunath GP, Habib F, Chatterji A. Bacterial chromosome organization. II. Few special cross-links, cell confinement, and molecular crowders play the pivotal roles. J Chem Phys 2019; 150:144909. [PMID: 30981247 DOI: 10.1063/1.5058217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using a coarse-grained bead-spring model of bacterial chromosomes of Caulobacter crescentus and Escherichia coli, we show that just 33 and 38 effective cross-links in 4017 and 4642 monomer chains at special positions along the chain contour can lead to the large-scale organization of the DNA polymer, where confinement effects of the cell walls play a key role in the organization. The positions of the 33/38 cross-links along the chain contour are chosen from the Hi-C contact map of bacteria C. crescentus and E. coli. We represent 1000 base pairs as a coarse-grained monomer in our bead-spring flexible ring polymer model of the DNA polymer. Thus, 4017/4642 beads on a flexible ring polymer represent the C. crescentus/E. coli DNA polymer with 4017/4642 kilo-base pairs. Choosing suitable parameters from Paper I, we also incorporate the role of compaction of the polymer coil due to the presence of molecular crowders and the ability of the chain to release topological constraints. We validate our prediction of the organization of the bacterial chromosomes with available experimental data and also give a prediction of the approximate positions of different segments within the cell. In the absence of confinement, the minimal number of effective cross-links required to organize the DNA chains of 4017/4642 monomers was 60/82 [Agarwal et al., Europhys. Lett. 121, 18004 (2018) and Agarwal et al., J. Phys.: Condens. Matter 30, 034003 (2018)].
Collapse
Affiliation(s)
- Tejal Agarwal
- IISER-Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - G P Manjunath
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, New York 10016, USA
| | - Farhat Habib
- Inmobi-Cessna Business Park, Outer Ring Road, Bangalore 560103, India
| | | |
Collapse
|
28
|
Sun LZ, Wang CH, Luo MB, Li H. Trapped and non-trapped polymer translocations through a spherical pore. J Chem Phys 2019; 150:024904. [PMID: 30646715 DOI: 10.1063/1.5063331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polymer translocation through a spherical pore is studied using the Langevin dynamics simulation. The translocation events are classified into two types: one is the trapped translocation in which the entire polymer is trapped in the pore and the other is the non-trapped translocation where the pore cannot hold the whole polymer. We find that the trapped translocation is favored at large spheres and small external voltages. However, the monomer-pore attraction would lead to the non-monotonic behavior of the trapped translocation possibility out of all translocation events. Moreover, both the trapped and non-trapped translocation times are dependent on the polymer length, pore size, external voltage, and the monomer-pore attraction. There exist two pathways for the polymer in the trapped translocation: an actively trapped pathway for the polymer trapped in the pore before the head monomer arrives at the pore exit, and a passively trapped pathway for the polymer trapped in the pore while the head monomer is struggling to move out of the pore. The studies of trapped pathways can provide a deep understanding of the polymer translocation behavior.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chang-Hui Wang
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Haibin Li
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
29
|
Sun LZ, Luo MB, Cao WP, Li H. Theoretical study on the polymer translocation into an attractive sphere. J Chem Phys 2018; 149:024901. [PMID: 30007381 DOI: 10.1063/1.5025609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report a non-sampling model, combining the blob method with the standard lattice-based approximation, to calculate the free energy for the polymer translocation into an attractive sphere (i.e., spherical confined trans side) through a small pore. The translocation time is then calculated by the Fokker-Planck equation based on the free energy profile. There is a competition between the confinement effect of the sphere and the polymer-sphere attraction. The translocation time is increased due to the confinement effect of the sphere, whereas it is reduced by the polymer-sphere attraction. The two effects offset each other at a special polymer-sphere attraction which is dependent on the sphere size, the polymer length, and the driving force. Moreover, the entire translocation process can be divided into an uncrowded stage where the polymer does not experience the confinement effect of the sphere and a crowded stage where the polymer is confined by the sphere. At the critical sphere radius, the durations of the two (uncrowded and crowded) stages are the same. The critical sphere radius R* has a scaling relation with the polymer length N as R* ∼ Nβ. The calculation results show that the current model can effectively treat the translocation of a three-dimensional self-avoiding polymer into the spherical confined trans side.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wei-Ping Cao
- Institute of Optoelectronic Technology, Lishui University, Lishui 323000, China
| | - Haibin Li
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
30
|
Sarabadani J, Ala-Nissila T. Theory of pore-driven and end-pulled polymer translocation dynamics through a nanopore: an overview. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:274002. [PMID: 29794332 DOI: 10.1088/1361-648x/aac796] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We review recent progress on the theory of dynamics of polymer translocation through a nanopore based on the iso-flux tension propagation (IFTP) theory. We investigate both pore-driven translocation of flexible and a semi-flexible polymers, and the end-pulled case of flexible chains by means of the IFTP theory and extensive molecular dynamics (MD) simulations. The validity of the IFTP theory can be quantified by the waiting time distributions of the monomers which reveal the details of the dynamics of the translocation process. The IFTP theory allows a parameter-free description of the translocation process and can be used to derive exact analytic scaling forms in the appropriate limits, including the influence due to the pore friction that appears as a finite-size correction to asymptotic scaling. We show that in the case of pore-driven semi-flexible and end-pulled polymer chains the IFTP theory must be augmented with an explicit trans side friction term for a quantitative description of the translocation process.
Collapse
Affiliation(s)
- Jalal Sarabadani
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran, Iran. Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom. Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom. Department of Applied Physics and QTF Center of Excellence, Aalto University School of Science, PO Box 11000, FI-00076 Aalto, Espoo, Finland
| | | |
Collapse
|
31
|
Kumar R, Chaudhuri A, Kapri R. Sequencing of semiflexible polymers of varying bending rigidity using patterned pores. J Chem Phys 2018; 148:164901. [PMID: 29716219 DOI: 10.1063/1.5036529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the translocation of a semiflexible polymer through extended pores with patterned stickiness, using Langevin dynamics simulations. We find that the consequence of pore patterning on the translocation time dynamics is dramatic and depends strongly on the interplay of polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness along their lengths, we find that variation of the block size of the sequences and the orientation results in large variations in the translocation time distributions. We show how this fact may be utilized to develop an effective sequencing strategy. This strategy involving multiple pores with patterned surface energetics can predict heteropolymer sequences having different bending rigidity to a high degree of accuracy.
Collapse
Affiliation(s)
- Rajneesh Kumar
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| | - Rajeev Kapri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India
| |
Collapse
|
32
|
Menais T. Polymer translocation under a pulling force: Scaling arguments and threshold forces. Phys Rev E 2018; 97:022501. [PMID: 29548220 DOI: 10.1103/physreve.97.022501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 05/24/2023]
Abstract
DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ∼N^{2}F^{-1} over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ.
Collapse
Affiliation(s)
- Timothée Menais
- CEA, INAC/SyMMES/CREAB, 17 rue des Martyrs 38054 Grenoble cedex 9 France and UOIT, CNABLAB, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
33
|
Sarabadani J, Ghosh B, Chaudhury S, Ala-Nissila T. Dynamics of end-pulled polymer translocation through a nanopore. EPL (EUROPHYSICS LETTERS) 2017; 120:38004. [DOI: 10.1209/0295-5075/120/38004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
34
|
Sarabadani J, Ikonen T, Mökkönen H, Ala-Nissila T, Carson S, Wanunu M. Driven translocation of a semi-flexible polymer through a nanopore. Sci Rep 2017; 7:7423. [PMID: 28785040 PMCID: PMC5547125 DOI: 10.1038/s41598-017-07227-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length [Formula: see text] the trans side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance R N as a function of the chain length N must be known. To this end, we first derive a semi-analytic scaling form for R N, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the trans side friction based on MD simulations. Augmented with these two factors, the theory shows that there are three main regimes for the scaling of the average translocation time τ ∝ N α . In the rod [Formula: see text], Gaussian [Formula: see text] and excluded volume chain [Formula: see text] ≫ 10 6 limits, α = 2, 3/2 and 1 + ν, respectively, where ν is the Flory exponent. Our results are in good agreement with available simulations and experimental data.
Collapse
Affiliation(s)
- Jalal Sarabadani
- Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076, Aalto, Espoo, Finland.
| | - Timo Ikonen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044, VTT, Finland
| | - Harri Mökkönen
- Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076, Aalto, Espoo, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076, Aalto, Espoo, Finland
- Department of Mathematical Sciences and Department of Physics, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Spencer Carson
- Department of Physics, Northeastern University, Boston, MA, 02115, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, 02115, United States
| |
Collapse
|
35
|
Luo MB, Tsehay DA, Sun LZ. Temperature dependence of the translocation time of polymer through repulsive nanopores. J Chem Phys 2017; 147:034901. [PMID: 28734304 DOI: 10.1063/1.4993217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The forced translocation of a polymer chain through repulsive nanopores was studied by using Langevin dynamics simulations. The polymer is in the compact globule state at low temperature and in the random coil state at high temperature. Simulation results show that the mean translocation time 〈τ〉 is highly dependent on the temperature T and the minimal 〈τ〉 is located near the coil-globule transition temperature. Moreover, the scaling behaviors 〈τ〉 ∼ Nα and 〈τ〉 ∼ F-δ are studied, with N the polymer length and F the driving force inside the nanopore. Universal values α = 1.4 and δ = 0.85 are observed for the polymer in the random coil state. While for the polymer in the compact globule state, α decreases from α = 2 at weak driving to 1.2 at strong driving for short N and δ increases with decreasing T in the low F region, but we find universal exponents α = 1.6 for long N and δ = 0.85 in the large F region. Results show that polymer's conformation plays a much more important role than the diffusion coefficient in controlling the translocation time of the polymer chain.
Collapse
Affiliation(s)
- Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | | | - Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
36
|
Menais T, Mossa S, Buhot A. Polymer translocation through nano-pores in vibrating thin membranes. Sci Rep 2016; 6:38558. [PMID: 27934936 PMCID: PMC5146916 DOI: 10.1038/srep38558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/10/2016] [Indexed: 01/31/2023] Open
Abstract
Polymer translocation is a promising strategy for the next-generation DNA sequencing technologies. The use of biological and synthetic nano-pores, however, still suffers from serious drawbacks. In particular, the width of the membrane layer can accommodate several bases at the same time, making difficult accurate sequencing applications. More recently, the use of graphene membranes has paved the way to new sequencing capabilities, with the possibility to measure transverse currents, among other advances. The reduced thickness of these new membranes poses new questions on the effect of deformability and vibrations of the membrane on the translocation process, two features which are not taken into account in the well established theoretical frameworks. Here, we make a first step forward in this direction. We report numerical simulation work on a model system simple enough to allow gathering significant insight on the effect of these features on the average translocation time, with appropriate statistical significance. We have found that the interplay between thermal fluctuations and the deformability properties of the nano-pore play a crucial role in determining the process. We conclude by discussing new directions for further work.
Collapse
Affiliation(s)
- Timothée Menais
- Univ. Grenoble Alpes, INAC-SYMMES, F-38000 Grenoble, France
- CNRS, INAC-SYMMES, F-38000 Grenoble, France
- CEA, INAC-SYMMES, F-38000 Grenoble, France
| | - Stefano Mossa
- Univ. Grenoble Alpes, INAC-SYMMES, F-38000 Grenoble, France
- CNRS, INAC-SYMMES, F-38000 Grenoble, France
- CEA, INAC-SYMMES, F-38000 Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, INAC-SYMMES, F-38000 Grenoble, France
- CNRS, INAC-SYMMES, F-38000 Grenoble, France
- CEA, INAC-SYMMES, F-38000 Grenoble, France
| |
Collapse
|
37
|
Yang QH, Luo MB. Dynamics of adsorbed polymers on attractive homogeneous surfaces. Sci Rep 2016; 6:37156. [PMID: 27849002 PMCID: PMC5111053 DOI: 10.1038/srep37156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023] Open
Abstract
Dynamic behaviors of polymer chains adsorbed on an attractive, homogeneous surface are studied by using dynamic Monte Carlo simulations. The translational diffusion coefficient Dxy parallel to the surface decreases as the intra-polymer attraction strength EPP or the polymer-surface attraction strength EPS increases. The rotational relaxation time τR increases with EPS, but the dependence of τR on EPP is dependent on the adsorption state of the polymer. We find that τR decreases with increasing EPP for a partially adsorbed polymer but it increases with EPP for a fully adsorbed polymer. Scaling relations Dxy ~ N−α and τR ~ Nβ are found for long polymers. The scaling exponent α is independent of EPS for long polymers but increases with EPP from α = 1.06 at EPP = 0. While β ≈ 2.7 is also roughly independent of EPS for the adsorbed polymer at EPP = 0, but β increases with EPS at EPP > 0. Moreover, we find that β always decreases with increasing EPP. Our results reveal different effects of the attractive surface on the diffusion and rotation of adsorbed polymers.
Collapse
Affiliation(s)
- Qing-Hui Yang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
| |
Collapse
|
38
|
Hsiao PY. Conformation Change, Tension Propagation and Drift-Diffusion Properties of Polyelectrolyte in Nanopore Translocation. Polymers (Basel) 2016; 8:E378. [PMID: 30974654 PMCID: PMC6432159 DOI: 10.3390/polym8100378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Using Langevin dynamics simulations, conformational, mechanical and dynamical properties of charged polymers threading through a nanopore are investigated. The shape descriptors display different variation behaviors for the cis- and trans-side sub-chains, which reflects a strong cis-trans dynamical asymmetry, especially when the driving field is strong. The calculation of bond stretching shows how the bond tension propagates on the chain backbone, and the chain section straightened by the tension force is determined by the ratio of the direct to the contour distances of the monomer to the pore. With the study of the waiting time function, the threading process is divided into the tension-propagation stage and the tail-retraction stage. At the end, the drift velocity, diffusive property and probability density distribution are explored. Owing to the non-equilibrium nature, translocation is not a simple drift-diffusion process, but exhibits several intermediate behaviors, such as ballistic motion, normal diffusion and super diffusion, before ending with the last, negative-diffusion behavior.
Collapse
Affiliation(s)
- Pai-Yi Hsiao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
39
|
Bianco V, Malgaretti P. Non-monotonous polymer translocation time across corrugated channels: Comparison between Fick-Jacobs approximation and numerical simulations. J Chem Phys 2016. [DOI: 10.1063/1.4961697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
The Semiflexible Polymer Translocation into Laterally Unbounded Region between Two Parallel Flat Membranes. Polymers (Basel) 2016; 8:polym8090332. [PMID: 30974609 PMCID: PMC6431992 DOI: 10.3390/polym8090332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Using the dynamic Monte Carlo method, we investigate dynamics of semiflexible polymer translocation through a nanopore into laterally unbounded region between two parallel flat membranes with separation R in presence of an electric field inside the pore. The average translocation time τ initially decreases rapidly with increase of R in the range of R < 10 and then almost keeps constant for R ≥ 10, and the decline range increases with increase of dimensionless bending stiffness κ. We mainly study the effect of chain length N, κ and electric field strength E on the translocation process for R = 5. The translocation dynamics is significantly altered in comparison to an unconfined environment. We find τ ~ Nα, where the exponent α increases with increase of E for small κ. α initially increases slowly with increase of E and then keeps constant for moderate κ. α decreases with increase of E for large κ. However, α decreases with increase of κ under various E. In addition, we find τ ~ κβ. β decreases with increase of N under various E. These behaviors are interpreted in terms of the probability distribution of translocation time and the waiting time of an individual monomer segment passing through the pore during translocation.
Collapse
|
41
|
|
42
|
Baschnagel J, Meyer H, Wittmer J, Kulić I, Mohrbach H, Ziebert F, Nam GM, Lee NK, Johner A. Semiflexible Chains at Surfaces: Worm-Like Chains and beyond. Polymers (Basel) 2016; 8:E286. [PMID: 30974563 PMCID: PMC6432221 DOI: 10.3390/polym8080286] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/27/2022] Open
Abstract
We give an extended review of recent numerical and analytical studies on semiflexible chains near surfaces undertaken at Institut Charles Sadron (sometimes in collaboration) with a focus on static properties. The statistical physics of thin confined layers, strict two-dimensional (2D) layers and adsorption layers (both at equilibrium with the dilute bath and from irreversible chemisorption) are discussed for the well-known worm-like-chain (WLC) model. There is mounting evidence that biofilaments (except stable d-DNA) are not fully described by the WLC model. A number of augmented models, like the (super) helical WLC model, the polymorphic model of microtubules (MT) and a model with (strongly) nonlinear flexural elasticity are presented, and some aspects of their surface behavior are analyzed. In many cases, we use approaches different from those in our previous work, give additional results and try to adopt a more general point of view with the hope to shed some light on this complex field.
Collapse
Affiliation(s)
- Jörg Baschnagel
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
| | - Hendrik Meyer
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
| | - Joachim Wittmer
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
| | - Igor Kulić
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
| | - Hervé Mohrbach
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Equipe BioPhysStat Université de Lorraine, 1 boulevard Arago, 57070 Metz, France.
| | - Falko Ziebert
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany.
| | - Gi-Moon Nam
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Department of Physics, Sejong University, Neundongro 209, Seoul 05006, Korea.
| | - Nam-Kyung Lee
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Department of Physics, Sejong University, Neundongro 209, Seoul 05006, Korea.
| | - Albert Johner
- Institut Charles Sadron, CNRS-UdS, 23 rue du Loess, BP 84047, 67034 Strasbourg cedex 2, France.
- Department of Physics, Sejong University, Neundongro 209, Seoul 05006, Korea.
| |
Collapse
|
43
|
Jeong D, Kim J, Sung BJ. Effects of solvent and wall roughness on the dynamics and structure of a single polymer in a slit. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Li H, Qian CJ, Luo MB. Critical adsorption of copolymer tethered on selective surfaces. J Chem Phys 2016; 144:164901. [PMID: 27131563 DOI: 10.1063/1.4947016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Critical adsorption behaviors of flexible copolymer chains tethered to a flat homogeneous surface are studied by using Monte Carlo simulations. We have compared the critical adsorption temperature Tc, estimated by a finite-size scaling method, for different AB copolymer sequences with A the attractive monomer and B the inert monomer. We find that Tc increases with an increase in the fraction of monomers A, fA, in copolymers, and it increases with an increase in the length of block A for the same fA. In particular, Tc of copolymer (AnBn)r can be expressed as a function of the block length, n, and Tc of copolymer (AnB)r and (ABm)r can be expressed as a linear function of fA. Tc of random copolymer chains also can be expressed as a linear function of fA and it can be estimated by using weight-average of Tc of different diblocks in the random copolymer. However, the crossover exponent is roughly independent of AB sequence distributions either for block copolymers or for random copolymers.
Collapse
Affiliation(s)
- Hong Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Chang-Ji Qian
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
45
|
Wang H, Shentu B, Faller R. Refinement of a coarse-grained model of poly(2,6-dimethyl-1,4-phenylene ether) and its application to blends of PPE and PS. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2015.1047368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Hsiao PY. Polyelectrolyte Threading through a Nanopore. Polymers (Basel) 2016; 8:E73. [PMID: 30979169 PMCID: PMC6432567 DOI: 10.3390/polym8030073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/02/2023] Open
Abstract
Threading charged polymers through a nanopore, driven by electric fields E, is investigated by means of Langevin dynamics simulations. The mean translocation time 〈 τ 〉 is shown to follow a scaling law Nα, and the exponent α increases monotonically from 1.16 (4) to 1.40 (3) with E. The result is double-checked by the calculation of mean square displacement of translocation coordinate, which asserts a scaling behavior tβ (for t near τ) with β complying with the relation αβ = 2. At a fixed chain length N, 〈τ〉 displayed a reciprocal scaling behavior E-1 in the weak and also in the strong fields, connected by a transition E-1.64(5) in the intermediate fields. The variations of the radius of gyration of chain and the positions of chain end are monitored during a translocation process; far-from-equilibrium behaviors are observed when the driving field is strong. A strong field can strip off the condensed ions on the chain when it passes the pore. The total charges of condensed ions are hence decreased. The studies for the probability and density distributions reveal that the monomers in the trans-region are gathered near the wall and form a pancake-like density profile with a hump cloud over it in the strong fields, due to fast translocation.
Collapse
Affiliation(s)
- Pai-Yi Hsiao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
47
|
Nir I, Huttner D, Meller A. Direct Sensing and Discrimination among Ubiquitin and Ubiquitin Chains Using Solid-State Nanopores. Biophys J 2016; 108:2340-9. [PMID: 25954891 DOI: 10.1016/j.bpj.2015.03.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/04/2015] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
Nanopore sensing involves an electrophoretic transport of analytes through a nanoscale pore, permitting label-free sensing at the single-molecule level. However, to date, the detection of individual small proteins has been challenging, primarily due to the poor signal/noise ratio that these molecules produce during passage through the pore. Here, we show that fine adjustment of the buffer pH, close to the isoelectric point, can be used to slow down the translocation speed of the analytes, hence permitting sensing and characterization of small globular proteins. Ubiquitin (Ub) is a small protein of 8.5 kDa, which is well conserved in all eukaryotes. Ub conjugates to proteins as a posttranslational modification called ubiquitination. The immense diversity of Ub substrates, as well as the complexity of Ub modification types and the numerous physiological consequences of these modifications, make Ub and Ub chains an interesting and challenging subject of study. The ability to detect Ub and to identify Ub linkage type at the single-molecule level may provide a novel tool for investigation in the Ub field. This is especially adequate because, for most ubiquitinated substrates, Ub modifies only a few molecules in the cell at a given time. Applying our method to the detection of mono- and poly-Ub molecules, we show that we can analyze their characteristics using nanopores. Of particular importance is that two Ub dimers that are equal in molecular weight but differ in 3D structure due to their different linkage types can be readily discriminated. Thus, to our knowledge, our method offers a novel approach for analyzing proteins in unprecedented detail using solid-state nanopores. Specifically, it provides the basis for development of single-molecule sensing of differently ubiquitinated substrates with different biological significance. Finally, our study serves as a proof of concept for approaching nanopore detection of sub-10-kDa proteins and demonstrates the ability of this method to differentiate among native and untethered proteins of the same mass.
Collapse
Affiliation(s)
- Iftach Nir
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Diana Huttner
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Amit Meller
- Department of Biomedical Engineering, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
48
|
Taddese T, Cheung DL, Carbone P. Scaling Behavior of Polymers at Liquid/Liquid Interfaces. ACS Macro Lett 2015; 4:1089-1093. [PMID: 35614809 DOI: 10.1021/acsmacrolett.5b00462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of a polymer chain confined in a soft 2D slit formed by two immiscible liquids is studied by means of molecular dynamics simulations. We show that the scaling behavior of a polymer confined between two liquids does not follow that predicted for polymers adsorbed on solid or soft surfaces such as lipid bilayers. Indeed, our results show that in the diffusive regime the polymer behaves like in bulk solution, following the Zimm model, and with the hydrodynamic interactions dominating its dynamics. Although the presence of the interface does not affect the long-time diffusion properties, it has an influence on the dynamics at short time scale, where for low molecular weight polymers the subdiffusive regime almost disappears. Simulations carried out when the liquid interface is sandwiched between two solid walls show that, when the confinement is a few times larger than the blob size, the Rouse dynamics is recovered.
Collapse
Affiliation(s)
- Tseden Taddese
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David L. Cheung
- School
of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Paola Carbone
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
49
|
Adhikari R, Bhattacharya A. Translocation of a semiflexible polymer through a nanopore in the presence of attractive binding particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032711. [PMID: 26465502 DOI: 10.1103/physreve.92.032711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 06/05/2023]
Abstract
We study the translocation dynamics of a semiflexible polymer through a nanopore from the cis into the trans compartment containing attractive binding particles (BPs) using the Langevin dynamics simulation in two dimensions. The binding particles accelerate the threading process in two ways: (i) reducing the back-sliding of the translocated monomer, and (ii) providing the pulling force toward the translocation direction. We observe that for certain binding strength (ε_{c}) and concentration (ρ) of the BPs, the translocation is faster than the ideal ratcheting condition as elucidated by Simon, Peskin, and Oster [M. Simon, C. S. Peskin, and G. F. Oster, Proc. Natl. Acad. Sci. USA 89, 3770 (1992)PNASA60027-842410.1073/pnas.89.9.3770]. The asymmetry produced by the BPs at the trans-side leads to similarities of this process to that of a driven translocation with an applied force inside the pore manifested in various physical quantities. Furthermore, we provide an analytic expression for the force experienced by the translocating chain as well as for the scaled mean first passage time (MFPT), for which we observe that for various combinations of N, ε, and ρ the scaled MFPT (〈τ〉/N^{1.5}ρ^{0.8}) collapses onto the same master plot. Based on the analysis of our simulation data, we provide plausible arguments with regard to how the scaling theory of driven translocation can be generalized for such a directed diffusion process by replacing the externally applied force with an effective force.
Collapse
Affiliation(s)
- Ramesh Adhikari
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| |
Collapse
|
50
|
Sarabadani J, Ikonen T, Ala-Nissila T. Theory of polymer translocation through a flickering nanopore under an alternating driving force. J Chem Phys 2015; 143:074905. [DOI: 10.1063/1.4928743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jalal Sarabadani
- Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
| | - Timo Ikonen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
- Department of Physics, Brown University, P.O. Box 1843, Providence, Rhode Island 02912-1843, USA
| |
Collapse
|