Li F, Saslow WM, Pokrovsky VL. Phase diagram for magnon condensate in Yttrium Iron Garnet film.
Sci Rep 2013;
3:1372. [PMID:
23455849 PMCID:
PMC3586816 DOI:
10.1038/srep01372]
[Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/15/2013] [Indexed: 11/09/2022] Open
Abstract
Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H, and a new type of collective oscillation.
Collapse