1
|
Xu Y, Nelson ML, Seymour JD, Mason TG. Signatures of nanoemulsion jamming and unjamming in stimulated-echo NMR. Phys Rev E 2023; 107:024605. [PMID: 36932564 DOI: 10.1103/physreve.107.024605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
The unjamming of elastic concentrated nanoemulsions into viscous dilute nanoemulsions, through dilution with the continuous phase, offers interesting opportunities for a pulsed-field gradient (PFG) NMR, particularly if the nanoemulsion is designed to take advantage of the nuclear specificity offered by NMR. Here, we make and study size-fractionated oil-in-water nanoemulsions using a perfluorinated copolymer silicone oil that is highly insoluble in the aqueous continuous phase. By studying these nanoemulsions using ^{19}F stimulated-echo PFG-NMR, we avoid any contribution from the aqueous continuous phase, which contains a nonfluorinated ionic surfactant. We find a dramatic change in the ^{19}F PFG-NMR decays at high field-gradient strengths as the droplet volume fraction, ϕ, is lowered through dilution. At high ϕ, observed decays as a function of field-gradient strength exhibit decay-to-plateau behavior indicating the jamming of nanodroplets, which contain ^{19}F probe molecules, in an elastic material reminiscent of a nanoporous solid. In contrast, at lower ϕ, only a simple decay is observed, indicating that the nanodroplets have unjammed and can diffuse over much larger distances. Through a comparison with bulk mechanical rheometry, we show that this dramatic change coincides with the loss of low-frequency shear elasticity of the nanoemulsion.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, California 90095, USA
| | - Madison L Nelson
- Department of Physics, Montana State University, Bozeman, Montana 59717-3920, USA
| | - Joseph D Seymour
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, USA
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, USA.,Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
2
|
Meleties M, Britton D, Katyal P, Lin B, Martineau RL, Gupta MK, Montclare JK. High-Throughput Microrheology for the Assessment of Protein Gelation Kinetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Meleties
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Bonnie Lin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Rhett L. Martineau
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Dannert C, Stokke BT, Dias RS. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers (Basel) 2019; 11:E275. [PMID: 30960260 PMCID: PMC6419045 DOI: 10.3390/polym11020275] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/21/2022] Open
Abstract
Hydrogels are materials used in a variety of applications, ranging from tissue engineering to drug delivery. The incorporation of nanoparticles to yield composite hydrogels has gained substantial momentum over the years since these afford tailor-making and extend material mechanical properties far beyond those achievable through molecular design of the network component. Here, we review different procedures that have been used to integrate nanoparticles into hydrogels; the types of interactions acting between polymers and nanoparticles; and how these underpin the improved mechanical and optical properties of the gels, including the self-healing ability of these composite gels, as well as serving as the basis for future development. In a less explored approach, hydrogels have been used as dispersants of nanomaterials, allowing a larger exposure of the surface of the nanomaterial and thus a better performance in catalytic and sensor applications. Furthermore, the reporting capacity of integrated nanoparticles in hydrogels to assess hydrogel properties, such as equilibrium swelling and elasticity, is highlighted.
Collapse
Affiliation(s)
- Corinna Dannert
- Department of Physics, NTNU- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bjørn Torger Stokke
- Department of Physics, NTNU- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Rita S Dias
- Department of Physics, NTNU- Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
4
|
Hartman J, Kirby B. Decorrelation correction for nanoparticle tracking analysis of dilute polydisperse suspensions in bulk flow. Phys Rev E 2017; 95:033305. [PMID: 28415349 DOI: 10.1103/physreve.95.033305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 06/07/2023]
Abstract
Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.
Collapse
Affiliation(s)
- John Hartman
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Brian Kirby
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
5
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|