1
|
Lin P, Hayashi T, Dinh H, Nakata E, Kinoshita M, Morii T. Enzyme Reactions Are Accelerated or Decelerated When the Enzymes Are Located Near the DNA Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15775-15792. [PMID: 40075560 PMCID: PMC11912197 DOI: 10.1021/acsami.4c18192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
It is known experimentally that enzymatic reactions are often accelerated when the enzymes are assembled on the scaffold of DNA nanostructures. However, the exact mechanism by which this acceleration occurs remains unclear. Here, we study the reactions of enzymes with different catalytic mechanisms assembled on a DNA scaffold with various substrates. Analysis of the hydration properties of the substrates using our accurate statistical mechanics theory classifies the substrates into two groups that behave as hydrophilic and hydrophobic solutes, respectively. The reaction of the enzyme on the DNA scaffold is accelerated with a hydrophilic substrate but decelerated with a hydrophobic substrate. We propose a mechanism of acceleration or deceleration in which, due to the formation of a high-density layer of water near the DNA surface with high negative charge density, the concentration of a substrate with high energetic affinity for water within the layer becomes higher than that near a free enzyme, whereas that of a substrate with low energetic affinity becomes lower within the layer. This study provides chemical and physical insights into a general case of biocatalysts, where the rates of chemical reactions occurring at the interface of biomolecules in aqueous environments can differ substantially from those in the bulk solution due to variations in the local concentration of a given ligand.
Collapse
Affiliation(s)
- Peng Lin
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Hayashi
- Interdisciplinary
Program of Biomedical Engineering, Assistive Technology, and Art and
Sports Sciences, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan
| | - Huyen Dinh
- Tam
Anh Research Institute (TAMRI), Tan Binh
District, Hochiminh City 72108, Vietnam
| | - Eiji Nakata
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Graduate
School of Science, Chiba University, Chiba 263-8522, Japan
- Center
for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Morii
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Health and Nutrition, Kyoto Koka Women’s
University, Ukyo-ku, Kyoto 615-0882, Japan
| |
Collapse
|
2
|
Inoue M, Hayashi T, Yasuda S, Kato M, Ikeguchi M, Murata T, Kinoshita M. Statistical-Mechanics Analyses on Thermodynamics of Protein Folding Constructed by Privalov and Co-Workers. J Phys Chem B 2024; 128:10110-10125. [PMID: 39376155 DOI: 10.1021/acs.jpcb.4c05811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Privalov and co-workers estimated the changes in hydration enthalpy and entropy upon ubiquitin unfolding and their temperature dependences denoted by ΔHhyd(T) and ΔShyd(T), respectively, from experimentally measured enthalpies and entropies of transfer of various model compounds from gaseous phase to water. We calculate ΔHhyd(T) and ΔShyd(T) for ubiquitin by our statistical-mechanics theory where molecular and atomistic models are employed for water and protein structure, respectively. ΔHhyd(T) and ΔShyd(T) calculated are in remarkably good agreement with those estimated by Privalov and co-workers. By examining relative magnitudes and signs of the changes in a variety of constituents of ΔHhyd(T) and ΔShyd(T), we confirm that the hydrophobic effect is an essential force driving a protein to fold. Detailed and comprehensive explanations are given for our claim that the prevailing views of the hydrophobic effect are not capable of elucidating its weakening at low temperatures, whereas our updated view is. We find out problematic points of the changes in enthalpy and entropy upon protein unfolding denoted by ΔH°(T) and ΔS°(T), respectively, which are measured using the differential scanning calorimetry at low pH, suggesting a theoretical method of calculating ΔH°(T) and ΔS°(T) at pH ∼ 7.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomohiko Hayashi
- Interdisciplinary Program of Biomedical Engineering, Assistive Technology, and Art and Sports Sciences, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Satoshi Yasuda
- Graduate School of Science and Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Minoru Kato
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takeshi Murata
- Graduate School of Science and Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Masahiro Kinoshita
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Comparison based on statistical thermodynamics between globule-to-coil transition of poly(N-isopropylacrylamide) and cold denaturation of a protein. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Accurate and rapid calculation of hydration free energy and its physical implication for biomolecular functions. Biophys Rev 2020; 12:469-480. [PMID: 32180122 DOI: 10.1007/s12551-020-00686-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 01/19/2023] Open
Abstract
Here we review a new method for calculating a hydration free energy (HFE) of a solute and discuss its physical implication for biomolecular functions in aqueous environments. The solute hydration is decomposed into processes 1 and 2. A cavity matching the geometric characteristics of the solute at the atomic level is created in process 1. Solute-water van der Waals and electrostatic interaction potentials are incorporated in process 2. The angle-dependent integral equation theory combined with our morphometric approach is applied to process 1, and the three-dimensional reference interaction site model theory is employed for process 2. Molecular models are adopted for water. The new method is characterized by the following. Solutes with various sizes including proteins can be treated in the same manner. It is almost as accurate as the molecular dynamics simulation despite its far smaller computational burden. It enables us to handle a solute possessing a significantly large total charge without difficulty. The HFE can be decomposed into a variety of physically insightful, energetic, and entropic components. It is best suited to the elucidation of mechanisms of protein folding, pressure and cold denaturation of a protein, and different types of molecular recognition.
Collapse
|
5
|
Inoue M, Hayashi T, Hikiri S, Ikeguchi M, Kinoshita M. Hydration properties of a protein at low and high pressures: Physics of pressure denaturation. J Chem Phys 2020; 152:065103. [PMID: 32061219 DOI: 10.1063/1.5140499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Using experimentally determined structures of ubiquitin at 1 and 3000 bar, we generate sufficiently large ensembles of model structures in the native and pressure-induced (denatured) states by means of molecular dynamics simulations with explicit water. We calculate the values of a free-energy function (FEF), which comprises the hydration free energy (HFE) and the intramolecular (conformational) energy and entropy, for the two states at 1 and 3000 bar. The HFE and the conformational entropy, respectively, are calculated using our statistical-mechanical method, which has recently been shown to be accurate, and the Boltzmann-quasi-harmonic method. The HFE is decomposed into a variety of physically insightful components. We show that the FEF of the native state is lower than that of the denatured state at 1 bar, whereas the opposite is true at 3000 bar, thus being successful in reproducing the pressure denaturation. We argue that the following two quantities of hydration play essential roles in the denaturation: the WASA-dependent term in the water-entropy loss upon cavity creation for accommodating the protein (WASA is the water-accessible surface area of the cavity) and the protein-water Lennard-Jones interaction energy. At a high pressure, the mitigation of the serious water crowding in the system is the most important, and the WASA needs to be sufficiently enlarged with the increase in the excluded-volume being kept as small as possible. The denatured structure thus induced is characterized by the water penetration into the protein interior. The pressure denaturation is accompanied by a significantly large gain of water entropy.
Collapse
Affiliation(s)
- Masao Inoue
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Simon Hikiri
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Inoue M, Hayashi T, Hikiri S, Ikeguchi M, Kinoshita M. Mechanism of globule-to-coil transition of poly(N-isopropylacrylamide) in water: Relevance to cold denaturation of a protein. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Yamada T, Hayashi T, Hikiri S, Kobayashi N, Yanagawa H, Ikeguchi M, Katahira M, Nagata T, Kinoshita M. How Does the Recently Discovered Peptide MIP Exhibit Much Higher Binding Affinity than an Anticancer Protein p53 for an Oncoprotein MDM2? J Chem Inf Model 2019; 59:3533-3544. [PMID: 31282659 DOI: 10.1021/acs.jcim.9b00226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An oncoprotein MDM2 binds to the extreme N-terminal peptide region of a tumor suppressor protein p53 (p53NTD) and inhibits its anticancer activity. We recently discovered a peptide named MIP which exhibits much higher binding affinity for MDM2 than p53NTD. Experiments showed that the binding free energy (BFE) of MDM2-MIP is lower than that of MDM2-p53NTD by approximately -4 kcal/mol. Here, we develop a theoretical method which is successful in reproducing this quantitative difference and elucidating its physical origins. It enables us to decompose the BFE into a variety of energetic and entropic components, evaluate their relative magnitudes, and identify the physical factors driving or opposing the binding. It should be applicable also to the assessment of differences among ligands in the binding affinity for a particular receptor, which is a central issue in modern chemistry. In the MDM2 case, the higher affinity of MIP is ascribed to a larger gain of translational, configurational entropy of water upon binding. This result is useful to the design of a peptide possessing even higher affinity for MDM2 as a reliable drug against a cancer.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Simon Hikiri
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan.,Graduate School of Science , Chiba University , 1-33 Yayoi-cho , Inage , Chiba 263-8522 , Japan
| | - Naohiro Kobayashi
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Hiroshi Yanagawa
- Y-Lab. of IDAC Theranostics, Inc. , 1-1-48 Suehiro-cho , Tsurumi, Yokohama 230-0045 , Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science , Yokohama City University , 1-7-29, Suehiro-cho , Tsurumi-ku, Yokohama 230-0045 , Japan.,RIKEN Medical Sciences Innovation Hub Program , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama 230-0045 , Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University , Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
8
|
Hikiri S, Hayashi T, Inoue M, Ekimoto T, Ikeguchi M, Kinoshita M. An accurate and rapid method for calculating hydration free energies of a variety of solutes including proteins. J Chem Phys 2019; 150:175101. [DOI: 10.1063/1.5093110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Simon Hikiri
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masao Inoue
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Amano KI, Hayashi T, Hashimoto K, Nishi N, Sakka T. Potential of mean force between spherical particles in an ionic liquid and its decomposition into energetic and entropic components: An analysis using an integral equation theory. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Murakami S, Hayashi T, Kinoshita M. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein. J Chem Phys 2017; 146:055102. [DOI: 10.1063/1.4975165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Misin M, Vainikka PA, Fedorov MV, Palmer DS. Salting-out effects by pressure-corrected 3D-RISM. J Chem Phys 2016; 145:194501. [DOI: 10.1063/1.4966973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Maksim Misin
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
| | - Petteri A. Vainikka
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Maxim V. Fedorov
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 143026, Russian Federation
| | - David S. Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|