1
|
Cui Z, Liu X, Qu H, Wang H. Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4539. [PMID: 39065936 PMCID: PMC11281055 DOI: 10.3390/s24144539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Pulmonary monitoring is crucial for the diagnosis and management of respiratory conditions, especially after the epidemic of coronavirus disease. Electrical impedance tomography (EIT) is an alternative non-radioactive tomographic imaging tool for monitoring pulmonary conditions. This review proffers the current EIT technical principles and applications on pulmonary monitoring, which gives a comprehensive summary of EIT applied on the chest and encourages its extensive usage to clinical physicians. The technical principles involving EIT instrumentations and image reconstruction algorithms are explained in detail, and the conditional selection is recommended based on clinical application scenarios. For applications, specifically, the monitoring of ventilation/perfusion (V/Q) is one of the most developed EIT applications. The matching correlation of V/Q could indicate many pulmonary diseases, e.g., the acute respiratory distress syndrome, pneumothorax, pulmonary embolism, and pulmonary edema. Several recently emerging applications like lung transplantation are also briefly introduced as supplementary applications that have potential and are about to be developed in the future. In addition, the limitations, disadvantages, and developing trends of EIT are discussed, indicating that EIT will still be in a long-term development stage before large-scale clinical applications.
Collapse
Affiliation(s)
- Ziqiang Cui
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; (X.L.); (H.Q.); (H.W.)
| | | | | | | |
Collapse
|
2
|
Pigatto AV, Rosa NB, Furuie SS, Mueller JL. LUFT: A low-frequency ultrasound tomography system designed for lung imaging. IEEE SENSORS JOURNAL 2024; 24:11091-11101. [PMID: 39629458 PMCID: PMC11611298 DOI: 10.1109/jsen.2024.3359634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Pulmonary imaging with ultrasound in the conventional MHz range suffers from significant artifacts, as the high frequency acoustic waves primarily reflect off of the lung pleura with little to no penetration through the lung tissue. Furthermore, B-mode ultrasound images are difficult to interpret and require a skilled technician to obtain. Motivated by the finding that acoustic frequencies in the kHz penetrate lung tissue, a low-frequency tomographic ultrasound system is presented. A Verasonics Vantage 64 low-frequency ultrasound system is programmed to work with a novel low-frequency Tonpilz transducers set arranged in a circular array on a belt. After signal processing, a time-of-flight (TOF) tomographic reconstruction algorithm with refraction correction is applied to estimate the sound speed in the plane of the transducer array. Data were collected on experimental phantoms made of ballistic gel containing targets of varying sound speeds, and reconstructions TOF were computed. Results demonstrate that the low-frequency ultrasound tomography system effectively detects targets in an experimental phantom with the ability to resolve multiple targets and distinguish between targets of high and low sound speed compared to the background medium.
Collapse
Affiliation(s)
- A V Pigatto
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
| | - N B Rosa
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
| | - S S Furuie
- Escola Politécnica, University of São Paulo, Brazil
| | - J L Mueller
- Department of Mathematics and the School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
3
|
Manuel AC, Vela JLP, Gude MJL, Otaegui NB. Usefulness of Monitoring Ventilation-Perfusion With Electrical Impedance Tomography in the Immediate Postoperative Period after Pulmonary Thromboendarterectomy. J Cardiothorac Vasc Anesth 2024; 38:796-801. [PMID: 38195273 DOI: 10.1053/j.jvca.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
|
4
|
Keeshan B, Adler A, Rossa C. Improved Configurations for 3D Acoustoelectric Tomography With a Minimal Number of Electrodes. IEEE Trans Biomed Eng 2023; 70:3501-3512. [PMID: 37405892 DOI: 10.1109/tbme.2023.3290472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
OBJECTIVE Acoustoelectric tomography (AET) is a hybrid imaging technique combining ultrasound and electrical impedance tomography (EIT). It exploits the acoustoelectric effect (AAE): an US wave propagating through the medium induces a local change in conductivity, depending on the acoustoelectric properties of the medium. Typically, AET image reconstruction is limited to 2D and most cases employ a large number of surface electrodes. METHODS This article investigates the detectability of contrasts in AET. We characterize the AEE signal as a function of the medium conductivity and electrode placement, using a novel 3D analytical model of the AET forward problem. The proposed model is compared to a finite element method simulation. RESULTS In a cylindrical geometry with an inclusion contrast of 5 times the background and two pairs of electrodes, the maximum, minimum, and mean suppression of the AEE signal are 68.5%, 3.12%, and 49.0%, respectively, over a random scan of electrode positions. The proposed model is compared to a finite element method simulation and the minimum mesh sizes required successfully model the signal is estimated. CONCLUSION We show that the coupling of AAE and EIT leads to a suppressed signal and the magnitude of the reduction is a function of geometry of the medium, contrast and electrode locations. SIGNIFICANCE This model can aid in the reconstruction of AET images involving a minimum number of electrodes to determine the optimal electrode placement.
Collapse
|
5
|
Zhang K, Li M, Liang H, Wang J, Yang F, Xu S, Abubakar A. Deep feature-domain matching for cardiac-related component separation from a chest electrical impedance tomography image series: proof-of-concept study. Physiol Meas 2022; 43. [PMID: 36265475 DOI: 10.1088/1361-6579/ac9c44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/20/2022] [Indexed: 02/07/2023]
Abstract
Objectives.The cardiac-related component in chest electrical impedance tomography (EIT) measurement is of potential value to pulmonary perfusion monitoring and cardiac function measurement. In a spontaneous breathing case, cardiac-related signals experience serious interference from ventilation-related signals. Traditional cardiac-related signal-separation methods are usually based on certain features of signals. To further improve the separation accuracy, more comprehensive features of the signals should be exploited.Approach.We propose an unsupervised deep-learning method called deep feature-domain matching (DFDM), which exploits the feature-domain similarity of the desired signals and the breath-holding signals. This method is characterized by two sub-steps. In the first step, a novel Siamese network is designed and trained to learn common features of breath-holding signals; in the second step, the Siamese network is used as a feature-matching constraint between the separated signals and the breath-holding signals.Main results.The method is first tested using synthetic data, and the results show satisfactory separation accuracy. The method is then tested using the data of three patients with pulmonary embolism, and the consistency between the separated images and the radionuclide perfusion scanning images is checked qualitatively.Significance.The method uses a lightweight convolutional neural network for fast network training and inference. It is a potential method for dynamic cardiac-related signal separation in clinical settings.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Institute for Precision Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Maokun Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Institute for Precision Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Haiqing Liang
- TEDA International Cardiovascular Hospital, Tianjin 300457, People's Republic of China
| | - Juan Wang
- National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fan Yang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Institute for Precision Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shenheng Xu
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Institute for Precision Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Aria Abubakar
- Schlumberger, Houston, TX 77056, United States of America
| |
Collapse
|
6
|
Jiang H, Han Y, Zheng X, Fang Q. Roles of electrical impedance tomography in lung transplantation. Front Physiol 2022; 13:986422. [PMID: 36407002 PMCID: PMC9669435 DOI: 10.3389/fphys.2022.986422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Lung transplantation is the preferred treatment method for patients with end-stage pulmonary disease. However, several factors hinder the progress of lung transplantation, including donor shortages, candidate selection, and various postoperative complications. Electrical impedance tomography (EIT) is a functional imaging tool that can be used to evaluate pulmonary ventilation and perfusion at the bedside. Among patients after lung transplantation, monitoring the graft’s pulmonary function is one of the most concerning issues. The feasible application of EIT in lung transplantation has been reported over the past few years, and this technique has gained increasing interest from multidisciplinary researchers. Nevertheless, physicians still lack knowledge concerning the potential applications of EIT in lung transplantation. We present an updated review of EIT in lung transplantation donors and recipients over the past few years, and discuss the potential use of ventilation- and perfusion-monitoring-based EIT in lung transplantation.
Collapse
Affiliation(s)
| | | | - Xia Zheng
- *Correspondence: Xia Zheng, ; Qiang Fang,
| | - Qiang Fang
- *Correspondence: Xia Zheng, ; Qiang Fang,
| |
Collapse
|
7
|
Biselli PJC, Degobbi Tenorio Quirino Dos Santos Lopes F, Righetti RF, Moriya HT, Tibério IFLC, Martins MA. Lung Mechanics Over the Century: From Bench to Bedside and Back to Bench. Front Physiol 2022; 13:817263. [PMID: 35910573 PMCID: PMC9326096 DOI: 10.3389/fphys.2022.817263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Lung physiology research advanced significantly over the last 100 years. Respiratory mechanics applied to animal models of lung disease extended the knowledge of the workings of respiratory system. In human research, a better understanding of respiratory mechanics has contributed to development of mechanical ventilators. In this review, we explore the use of respiratory mechanics in basic science to investigate asthma and chronic obstructive pulmonary disease (COPD). We also discuss the use of lung mechanics in clinical care and its role on the development of modern mechanical ventilators. Additionally, we analyse some bench-developed technologies that are not in widespread use in the present but can become part of the clinical arsenal in the future. Finally, we explore some of the difficult questions that intensive care doctors still face when managing respiratory failure. Bringing back these questions to bench can help to solve them. Interaction between basic and translational science and human subject investigation can be very rewarding, as in the conceptualization of “Lung Protective Ventilation” principles. We expect this interaction to expand further generating new treatments and managing strategies for patients with respiratory disease.
Collapse
Affiliation(s)
- Paolo Jose Cesare Biselli
- Intensive Care Unit, University Hospital, University of Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Paolo Jose Cesare Biselli,
| | | | - Renato Fraga Righetti
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Hospital Sírio-Libanês, Serviço de Reabilitação, São Paulo, Brazil
| | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| | - Iolanda Fátima Lopes Calvo Tibério
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Bayford R, Sadleir R, Frerichs I. Advances in electrical impedance tomography and bioimpedance including applications in COVID-19 diagnosis and treatment. Physiol Meas 2022; 43. [DOI: 10.1088/1361-6579/ac4e6c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
|
9
|
Nguyen DM, Duong Trong L, McEwan AL. An efficient and fast multi-band focused bioimpedance solution with EIT-based reconstruction for pulmonary embolism assessment: a simulation study from massive to segmental blockage. Physiol Meas 2022; 43. [PMID: 34986471 DOI: 10.1088/1361-6579/ac4830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Pulmonary embolism (PE) is an acute condition that blocks the perfusion to the lungs and is a common complication of Covid-19. However, PE is often not diagnosed in time, especially in the pandemic time due to complicated diagnosis protocol. In this study, a non-invasive, fast and efficient bioimpedance method with the EIT-based reconstruction approach is proposed to assess the lung perfusion reliably. APPROACH Some proposals are presented to improve the sensitivity and accuracy for the bioimpedance method: (1) a new electrode configuration and focused pattern to help study deep changes caused by PE within each lung field separately, (2) a measurement strategy to compensate the effect of different boundary shapes and varied respiratory conditions on the perfusion signals and (3) an estimator to predict the lung perfusion capacity, from which the severity of PE can be assessed. The proposals were tested on the first-time simulation of PE events at different locations and degrees from segmental blockages to massive blockages. Different object boundary shapes and varied respiratory conditions were included in the simulation to represent for different populations in real measurements. RESULTS The correlation between the estimator and the perfusion was very promising (R = 0.91, errors < 6%). The measurement strategy with the proposed configuration and pattern has helped stabilize the estimator to non-perfusion factors such as the boundary shapes and varied respiration conditions (3-5% errors). SIGNIFICANCE This promising preliminary result has demonstrated the proposed bioimpedance method's capability and feasibility, and might start a new direction for this application.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- School of Biomedical Engineering, University of Sydney - Camperdown and Darlington Campus SciTech Library, Room 415, Level 4, Link Building Faculty of Engineering and IT, The University of Sydney, Darlington, Hanoi, New South Wales, 100000, AUSTRALIA
| | - Luong Duong Trong
- School of Electronics and Telecommunication, Hanoi University of Science and Technology, No. 1, Dai Co Viet Street, Hai Ba Trung District, Hanoi, 100000, VIET NAM
| | - Alistair L McEwan
- School of Biomedical Engineering, The University of Sydney, Room 415, Level 4, Link Building Faculty of Engineering and IT, The University of Sydney, Darlington NSW 2006, Australia, Sydney, New South Wales, 2006, AUSTRALIA
| |
Collapse
|
10
|
Electrical impedance tomography clues to detect pulmonary thrombosis in a teenager with COVID-19. Pediatr Radiol 2022; 52:144-147. [PMID: 34557955 PMCID: PMC8460319 DOI: 10.1007/s00247-021-05199-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/12/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
We report a case of pulmonary thrombosis in a teenager during a hypercoagulable state associated with COVID-19 (coronavirus disease 2019) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). A condition rare in children and adolescents, pulmonary thrombosis underdiagnosis likely increases morbidity and mortality. A pulmonary thrombosis diagnosis requires a high level of suspicion and relies on the combination of clinical presentation, D-dimer elevation, and computed tomography (CT) pulmonary angiography or ventilation/perfusion scans, imaging techniques that are difficult to perform. Electrical impedance tomography (EIT) has gained attention, as it provides real-time ventilation distribution analysis. In addition, lung pulsatility images can be obtained through this technique using electrocardiogram gating to filter out ventilation. In this case report, the reduced EIT pulsatility corresponded to the perfusion defect found on the CT scan, information that was obtained at the bedside without radiation or contrast exposure.
Collapse
|
11
|
Alsaker M, Cárdenas DAC, Furuie SS, Mueller JL. Complementary use of priors for pulmonary imaging with electrical impedance and ultrasound computed tomography. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 2021; 395:113591. [PMID: 34092904 PMCID: PMC8177074 DOI: 10.1016/j.cam.2021.113591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For medical professionals caring for patients undergoing mechanical ventilation due to respiratory failure, the ability to quickly and safely obtain images of pulmonary function at the patient's bedside would be highly desirable. Such images could be used to provide early warnings of developing pulmonary pathologies in real time, thereby reducing the incidence of complications and improving patient outcomes. Electrical impedance tomography (EIT) and low-frequency ultrasound computed tomography (USCT) are two imaging techniques with the potential to provide real-time non-ionizing pulmonary monitoring in the ICU setting, and each method has its own unique advantages as well as drawbacks. In this work, we describe a new algorithm for a system in which the strengths of the two modalities are combined in a complementary fashion. Specifically, preliminary reconstructions from each modality are used as priors to stabilize subsequent reconstructions, providing improved spatial resolution, sharper organ boundaries, and enhanced appearance of pathologies and other features. Results are validated using three numerically simulated thoracic phantoms representing pulmonary pathologies.
Collapse
Affiliation(s)
- Melody Alsaker
- Department of Mathematics; Gonzaga University, Spokane, WA 99258 USA
| | | | | | - Jennifer L. Mueller
- Department of Mathematics and School of Biomedical Engineering, Colorado State University, CO 80523 USA
| |
Collapse
|
12
|
Shi Y, Yang Z, Xie F, Ren S, Xu S. The Research Progress of Electrical Impedance Tomography for Lung Monitoring. Front Bioeng Biotechnol 2021; 9:726652. [PMID: 34660553 PMCID: PMC8517404 DOI: 10.3389/fbioe.2021.726652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023] Open
Abstract
Medical imaging can intuitively show people the internal structure, morphological information, and organ functions of the organism, which is one of the most important inspection methods in clinical medical diagnosis. Currently used medical imaging methods can only be applied to some diagnostic occasions after qualitative lesions have been generated, and the general imaging technology is usually accompanied by radiation and other conditions. However, electrical impedance tomography has the advantages of being noninvasive and non-radiative. EIT (Electrical Impedance Tomography) is also widely used in the early diagnosis and treatment of some diseases because of these advantages. At present, EIT is relatively mature and more and more image reconstruction algorithms are used to improve imaging resolution. Hardware technology is also developing rapidly, and the accuracy of data collection and processing is continuously improving. In terms of clinical application, EIT has also been used for pathological treatment of lungs, the brain, and the bladder. In the future, EIT has a good application prospect in the medical field, which can meet the needs of real-time, long-term monitoring and early diagnosis. Aiming at the application of EIT in the treatment of lung pathology, this article reviews the research progress of EIT, image reconstruction algorithms, hardware system design, and clinical applications used in the treatment of lung diseases. Through the research and introduction of several core components of EIT technology, it clarifies the characteristics of EIT system complexity and its solutions, provides research ideas for subsequent research, and once again verifies the broad development prospects of EIT technology in the future.
Collapse
Affiliation(s)
- Yan Shi
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - ZhiGuo Yang
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Fei Xie
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Shuai Ren
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - ShaoFeng Xu
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| |
Collapse
|
13
|
Maciejewski D, Putowski Z, Czok M, Krzych ŁJ. Electrical impedance tomography as a tool for monitoring mechanical ventilation. An introduction to the technique. Adv Med Sci 2021; 66:388-395. [PMID: 34371248 DOI: 10.1016/j.advms.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023]
Abstract
Electrical impedance tomography (EIT) is a non-invasive, radiation-free method of diagnostics imaging, allowing for a bedside, real-time dynamic assessment of lung function. It stands as an alternative for other imagining methods, such as computed tomography (CT) or ultrasound. Even though the technique is rather novel, it has a wide variety of possible applications. In the era of modern mechanical ventilation, a dynamic assessment of patient's respiratory condition appears to fulfil the idea of personalized treatment. Additionally, an increasing frequency of respiratory failure among intensive care populations raises demand for improved monitoring tools. This review aims to raise awareness and presents possible implications for the use of EIT in the intensive care setting.
Collapse
Affiliation(s)
- Dariusz Maciejewski
- Department of Anesthesiology and Intensive Therapy, Regional Hospital in Bielsko-Biala, Bielsko-Biala, Poland
| | - Zbigniew Putowski
- Students' Scientific Society, Department of Anesthesiology and Intensive Care, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Marcelina Czok
- Students' Scientific Society, Department of Anesthesiology and Intensive Care, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Łukasz J Krzych
- Students' Scientific Society, Department of Anesthesiology and Intensive Care, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
Calderón's Method with a Spatial Prior for 2-D EIT Imaging of Ventilation and Perfusion. SENSORS 2021; 21:s21165635. [PMID: 34451077 PMCID: PMC8402350 DOI: 10.3390/s21165635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Bedside imaging of ventilation and perfusion is a leading application of 2-D medical electrical impedance tomography (EIT), in which dynamic cross-sectional images of the torso are created by numerically solving the inverse problem of computing the conductivity from voltage measurements arising on electrodes due to currents applied on electrodes on the surface. Methods of reconstruction may be direct or iterative. Calderón’s method is a direct reconstruction method based on complex geometrical optics solutions to Laplace’s equation capable of providing real-time reconstructions in a region of interest. In this paper, the importance of accurate modeling of the electrode location on the body is demonstrated on simulated and experimental data, and a method of including a priori spatial information in dynamic human subject data is presented. The results of accurate electrode modeling and a spatial prior are shown to improve detection of inhomogeneities not included in the prior and to improve the resolution of ventilation and perfusion images in a human subject.
Collapse
|
15
|
Evaluation of Thoracic Equivalent Multiport Circuits Using an Electrical Impedance Tomography Hardware Simulation Interface. TECHNOLOGIES 2021. [DOI: 10.3390/technologies9030058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrical impedance tomography is a low-cost, safe, and high temporal resolution medical imaging modality which finds extensive application in real-time thoracic impedance imaging. Thoracic impedance changes can reveal important information about the physiological condition of patients’ lungs. In this way, electrical impedance tomography can be a valuable tool for monitoring patients. However, this technique is very sensitive to measurement noise or possible minor signal errors, coming from either the hardware, the electrodes, or even particular biological signals. Thus, the design of a good performance electrical impedance tomography hardware setup which properly interacts with the tissue examined is both an essential and a challenging concept. In this paper, we adopt an extensive simulation approach, which combines the system’s analogue and digital hardware, along with equivalent circuits of 3D finite element models that represent thoracic cavities. Each thoracic finite element model is created in MATLAB based on existing CT images, while the tissues’ conductivity and permittivity values for a selected frequency are acquired from a database using Python. The model is transferred to a multiport RLC network, embedded in the system’s hardware which is simulated at LT SPICE. The voltage output data are transferred to MATLAB where the electrical impedance tomography signal sampling and digital processing is also simulated. Finally, image reconstructions are performed in MATLAB, using the EIDORS library tool and considering the signal noise levels and different electrode and signal sampling configurations (ADC bits, sampling frequency, number of taps).
Collapse
|
16
|
Shin K, Ahmad SU, Mueller JL. A Three Dimensional Calderon-Based Method for EIT on the Cylindrical Geometry. IEEE Trans Biomed Eng 2021; 68:1487-1495. [PMID: 33206600 PMCID: PMC8109182 DOI: 10.1109/tbme.2020.3039197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Electrical impedance tomography (EIT) is an imaging modality in which voltage data arising from currents applied on the boundary are used to reconstruct the conductivity distribution in the interior. This paper provides a novel direct (noniterative) 3-D reconstruction algorithm for EIT in the cylindrical geometry. METHODS The algorithm is based on Calderón's method [Calderón, 1980], and is implemented for data collected on two or four rows of electrodes on the boundary of a cylinder. RESULTS The effectiveness of the method to localize inhomogeneities in the plane of the electrodes and in the z-direction is demonstrated on simulated and experimental data. CONCLUSIONS AND SIGNIFICANCE The results from simulated and experimental data show that the method is effective for distinguishing in-plane and nearby out-of-plane inhomogeneities with good spatial resolution in the vertical z direction with computational efficiency.
Collapse
|
17
|
Kircher M, Elke G, Stender B, Hernandez Mesa M, Schuderer F, Dossel O, Fuld MK, Halaweish AF, Hoffman EA, Weiler N, Frerichs I. Regional Lung Perfusion Analysis in Experimental ARDS by Electrical Impedance and Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:251-261. [PMID: 32956046 DOI: 10.1109/tmi.2020.3025080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical impedance tomography is clinically used to trace ventilation related changes in electrical conductivity of lung tissue. Estimating regional pulmonary perfusion using electrical impedance tomography is still a matter of research. To support clinical decision making, reliable bedside information of pulmonary perfusion is needed. We introduce a method to robustly detect pulmonary perfusion based on indicator-enhanced electrical impedance tomography and validate it by dynamic multidetector computed tomography in two experimental models of acute respiratory distress syndrome. The acute injury was induced in a sublobar segment of the right lung by saline lavage or endotoxin instillation in eight anesthetized mechanically ventilated pigs. For electrical impedance tomography measurements, a conductive bolus (10% saline solution) was injected into the right ventricle during breath hold. Electrical impedance tomography perfusion images were reconstructed by linear and normalized Gauss-Newton reconstruction on a finite element mesh with subsequent element-wise signal and feature analysis. An iodinated contrast agent was used to compute pulmonary blood flow via dynamic multidetector computed tomography. Spatial perfusion was estimated based on first-pass indicator dilution for both electrical impedance and multidetector computed tomography and compared by Pearson correlation and Bland-Altman analysis. Strong correlation was found in dorsoventral (r = 0.92) and in right-to-left directions (r = 0.85) with good limits of agreement of 8.74% in eight lung segments. With a robust electrical impedance tomography perfusion estimation method, we found strong agreement between multidetector computed and electrical impedance tomography perfusion in healthy and regionally injured lungs and demonstrated feasibility of electrical impedance tomography perfusion imaging.
Collapse
|
18
|
Proença M, Braun F, Lemay M, Solà J, Adler A, Riedel T, Messerli FH, Thiran JP, Rimoldi SF, Rexhaj E. Non-invasive pulmonary artery pressure estimation by electrical impedance tomography in a controlled hypoxemia study in healthy subjects. Sci Rep 2020; 10:21462. [PMID: 33293566 PMCID: PMC7722929 DOI: 10.1038/s41598-020-78535-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Pulmonary hypertension is a hemodynamic disorder defined by an abnormal elevation of pulmonary artery pressure (PAP). Current options for measuring PAP are limited in clinical practice. The aim of this study was to evaluate if electrical impedance tomography (EIT), a radiation-free and non-invasive monitoring technique, can be used for the continuous, unsupervised and safe monitoring of PAP. In 30 healthy volunteers we induced gradual increases in systolic PAP (SPAP) by exposure to normobaric hypoxemia. At various stages of the protocol, the SPAP of the subjects was estimated by transthoracic echocardiography. In parallel, in the pulmonary vasculature, pulse wave velocity was estimated by EIT and calibrated to pressure units. Within-cohort agreement between both methods on SPAP estimation was assessed through Bland-Altman analysis and at subject level, with Pearson's correlation coefficient. There was good agreement between the two methods (inter-method difference not significant (P > 0.05), bias ± standard deviation of - 0.1 ± 4.5 mmHg) independently of the degree of PAP, from baseline oxygen saturation levels to profound hypoxemia. At subject level, the median per-subject agreement was 0.7 ± 3.8 mmHg and Pearson's correlation coefficient 0.87 (P < 0.05). Our results demonstrate the feasibility of accurately assessing changes in SPAP by EIT in healthy volunteers. If confirmed in a patient population, the non-invasive and unsupervised day-to-day monitoring of SPAP could facilitate the clinical management of patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Martin Proença
- Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland. .,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Fabian Braun
- Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland.,Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mathieu Lemay
- Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
| | - Josep Solà
- Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
| | - Andy Adler
- Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | - Thomas Riedel
- Department of Paediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland.,Department of Paediatrics, Inselspital Bern, University Children's Hospital, Bern, Switzerland
| | - Franz H Messerli
- Department of Cardiology and Clinical Research, Inselspital Bern, University Hospital, Bern, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stefano F Rimoldi
- Department of Cardiology and Clinical Research, Inselspital Bern, University Hospital, Bern, Switzerland
| | - Emrush Rexhaj
- Department of Cardiology and Clinical Research, Inselspital Bern, University Hospital, Bern, Switzerland
| |
Collapse
|
19
|
Wang Z, Yue S, Wang H, Wang Y. Data preprocessing methods for electrical impedance tomography: a review. Physiol Meas 2020; 41:09TR02. [PMID: 33017303 DOI: 10.1088/1361-6579/abb142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Electrical impedance tomography (EIT) is a promising measurement technique in applications, especially in industrial monitoring and clinical diagnosis. However, two major drawbacks exist that limit the spatial resolution of reconstructed EIT images, i.e. the 'soft field' effect and the ill-posed problem. In recent years, apart from the development of reconstruction algorithms, some preprocessing methods for measured data or sensitivity maps have also been proposed to reduce these negative effects. It is necessary to find the optimal preprocessing method for various EIT reconstruction algorithms. APPROACH In this paper, seven typical data preprocessing methods for EIT are reviewed. The image qualities obtained using these methods are evaluated and compared in simulations, and their applicable ranges and combination effects are summarized. MAIN RESULTS The results show that all the reviewed methods can enhance the quality of EIT reconstructed images to different extents, and there is an optimal one under any given reconstruction algorithm. In addition, most of the reviewed methods do not work well when using the Tikhonov regularization algorithm. SIGNIFICANCE This paper introduces the preprocessing method to EIT, and the quality of reconstructed images obtained using these methods is evaluated through simulations. The results can provide a reference for practical applications.
Collapse
Affiliation(s)
- Zeying Wang
- School of Electrical Information and Automation, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Nguyen DM, Andersen T, Qian P, Barry T, McEwan A. Electrical Impedance Tomography for monitoring cardiac radiofrequency ablation: a scoping review of an emerging technology. Med Eng Phys 2020; 84:36-50. [PMID: 32977921 DOI: 10.1016/j.medengphy.2020.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Arrhythmias are common cardiac diseases which can be treated effectively by the cardiac radiofrequency ablation (CRFA). However, information regarding the lesion growth within the myocardium is critical to the procedure's safety and efficacy but still unavailable in the current catheterisation lab (CathLab). Over the last 20 years, many efforts have been made in order to track the lesion size during the procedure. Unfortunately, all the approaches have their own limitations preventing them from the clinical translation and hence making the lesion size monitoring during a CRFA still an open issue. Electrical Impedance Tomography (EIT) is an impedance imaging modality that might be able to image the thermal-related impedance changes from which the lesion size can be measured. With the availability of the patient's CT scans, for a detailed model, and the catheter-based electrodes for the internal electrodes, EIT accuracy and sensitivity to the ablated sites can be significantly improved and is worth being explored for this application. Though EIT is still new to CRFA with no in-vivo experiments being done according to our up-to-date searching, many related EIT studies and its extensive research in Hyperthermia and other ablations can reveal many hints for a possibility of the CRFA-EIT application. In this paper, we present a review on multiple aspects of EIT in CRFA. First, the expected CRFA-EIT signal range and frequency are discussed based on various measured impedance results obtained from lesions in the past. Second, the possible noise sources that can happen in a clinical CRFA procedure, along with their signal range and frequency compared to the CRFA-EIT signal, and, third, the available current solutions to separate such noises from the CRFA-EIT signal. Finally, we review the progress of EIT in thermal applications over the last two decades in order to identify the developments that EIT can take advantage of and the current drawbacks that need to be solved for a potential CRFA-EIT application.
Collapse
Affiliation(s)
- Duc M Nguyen
- Department of Biomedical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam; School of Electrical and Information Engineering, University of Sydney, Sydney, Australia.
| | - Tomas Andersen
- School of Electrical and Information Engineering, University of Sydney, Sydney, Australia
| | - Pierre Qian
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Tony Barry
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Alistair McEwan
- School of Electrical and Information Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Capps M, Mueller JL. Reconstruction of Organ Boundaries With Deep Learning in the D-Bar Method for Electrical Impedance Tomography. IEEE Trans Biomed Eng 2020; 68:826-833. [PMID: 32746047 DOI: 10.1109/tbme.2020.3006175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Medical electrical impedance tomography is a non-ionizing imaging modality in which low-amplitude, low-frequency currents are applied on electrodes on the body, the resulting voltages are measured, and an inverse problem is solved to determine the conductivity distribution in the region of interest. Due the ill-posedness of the inverse problem, the boundaries of internal organs are typically blurred in the reconstructed image. METHODS A deep learning approach is introduced in the D-bar method for reconstructing a 2-D slice of the thorax to recover the boundaries of organs. This is accomplished by training a deep neural network on labeled pairs of scattering transforms and the boundaries of the organs in the data from which the transforms were computed. This allows the network to "learn" the nonlinear mapping between them by minimizing the error between the output of the network and known actual boundaries. Further, a "sparse" reconstruction is computed by fusing the results of the standard D-bar reconstruction with reconstructed organ boundaries from the neural network. RESULTS Results are shown on simulated and experimental data collected on a saline-filled tank with agar targets simulating the conductivity of the heart and lungs. CONCLUSIONS AND SIGNIFICANCE The results demonstrate that deep neural networks can successfully learn the mapping between scattering transforms and the internal boundaries of structures.
Collapse
|
22
|
Kao TJ, Amm B, Ashe J, Davenport D. Pulmonary Ventilation and Pulsatile Perfusion Imaging on Premature Neonates using Simultaneous Multi-Source EIT. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1444-1447. [PMID: 33018262 DOI: 10.1109/embc44109.2020.9176446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We applied our Simultaneous Multi-Source Electrical Impedance Tomography (SMS-EIT) system to detect pulmonary ventilation and pulsatile perfusion on 5 preterm newborns with respiratory distress syndrome under the nasal continuous positive airway pressure (CPAP) treatment. The results show that derived impedance changes have a potential for clinical application to evaluate effects in spontaneously breathing preterm infants with and without CPAP.
Collapse
|
23
|
Alsaker M, Mueller JL, Murthy R. DYNAMIC OPTIMIZED PRIORS FOR D-BAR RECONSTRUCTIONS OF HUMAN VENTILATION USING ELECTRICAL IMPEDANCE TOMOGRAPHY. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 2019; 362:276-294. [PMID: 31379404 PMCID: PMC6677406 DOI: 10.1016/j.cam.2018.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A method of including dynamic spatial priors in the 2-D D-bar reconstruction algorithm is presented for use on time-difference reconstructions of human subject thoracic data. The conductivity values for the prior are updated at each frame in the reconstruction using an optimization method applied to the scattering transform. The updates of the dynamic spatial priors are guided by a principle component analysis of the data to determine the timepoint in the ventilatory (or cardiac) cycle. The effectiveness of the method is demonstrated on human subject ventilatory data.
Collapse
Affiliation(s)
- Melody Alsaker
- Department of Mathematics; Gonzaga University, Spokane, WA 99258 USA,
| | - Jennifer L Mueller
- Department of Mathematics and School of Biomedical Engineering, Colorado State University, CO 80523 USA,
| | - Rashmi Murthy
- Department of Mathematics, Colorado State University, CO 80523 USA,
| |
Collapse
|
24
|
Braun F, Proença M, Wendler A, Solà J, Lemay M, Thiran JP, Weiler N, Frerichs I, Becher T. Noninvasive measurement of stroke volume changes in critically ill patients by means of electrical impedance tomography. J Clin Monit Comput 2019; 34:903-911. [PMID: 31624996 DOI: 10.1007/s10877-019-00402-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Previous animal experiments have suggested that electrical impedance tomography (EIT) has the ability to noninvasively track changes in cardiac stroke volume (SV). The present study intended to reproduce these findings in patients during a fluid challenge. In a prospective observational study including critically ill patients on mechanical ventilation, SV was estimated via ECG-gated EIT before and after a fluid challenge and compared to transpulmonary thermodilution reference measurements. Relative changes in EIT-derived cardiosynchronous impedance changes in the heart ([Formula: see text]) and lung region ([Formula: see text]) were compared to changes in reference SV by assessing the concordance rate (CR) and Pearson's correlation coefficient (R). We compared 39 measurements of 20 patients. [Formula: see text] did not show to be a reliable estimate for tracking changes of SV (CR = 52.6% and R = 0.13 with P = 0.44). In contrast, [Formula: see text] showed an acceptable trending performance (CR = 94.4% and R = 0.72 with P < 0.0001). Our results indicate that ECG-gated EIT measurements of [Formula: see text] are able to noninvasively monitor changes in SV during a fluid challenge in critically ill patients. However, this was not possible using [Formula: see text]. The present approach is limited by the influences induced by ventilation, posture or changes in electrode-skin contact and requires further validation.
Collapse
Affiliation(s)
- Fabian Braun
- Centre Suisse d'Electronique et de Microtechnique (CSEM SA), Rue Jaquet-Droz 1, 2002, Neuchâtel, Switzerland. .,Signal Processing Laboratory LTS5, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
| | - Martin Proença
- Centre Suisse d'Electronique et de Microtechnique (CSEM SA), Rue Jaquet-Droz 1, 2002, Neuchâtel, Switzerland.,Signal Processing Laboratory LTS5, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Wendler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Josep Solà
- Centre Suisse d'Electronique et de Microtechnique (CSEM SA), Rue Jaquet-Droz 1, 2002, Neuchâtel, Switzerland
| | - Mathieu Lemay
- Centre Suisse d'Electronique et de Microtechnique (CSEM SA), Rue Jaquet-Droz 1, 2002, Neuchâtel, Switzerland
| | - Jean-Phillipe Thiran
- Signal Processing Laboratory LTS5, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
25
|
Nguyen DM, Qian P, Barry T, McEwan A. Self-weighted NOSER-prior electrical impedance tomography using internal electrodes in cardiac radiofrequency ablation. Physiol Meas 2019; 40:065006. [DOI: 10.1088/1361-6579/ab1937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Stowe S, Boyle A, Sage M, See W, Praud JP, Fortin-Pellerin É, Adler A. Comparison of bolus- and filtering-based EIT measures of lung perfusion in an animal model. Physiol Meas 2019; 40:054002. [PMID: 30965314 DOI: 10.1088/1361-6579/ab1794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Two main functional imaging approaches have been used to measure regional lung perfusion using electrical impedance tomography (EIT): venous injection of a hypertonic saline contrast agent and imaging of its passage through the heart and lungs, and digital filtering of heart-frequency impedance changes over sequences of EIT images. This paper systematically compares filtering-based perfusion estimates and bolus injection methods to determine to which degree they are related. APPROACH EIT data was recorded on seven mechanically ventilated newborn lambs in which ventilation distribution was varied through changes in posture between prone, supine, left- and right-lateral positions. Perfusion images were calculated using frequency filtering and ensemble averaging during both ventilation and apnoea time segments for each posture to compare against contrast agent-based methods using Jaccard distance score. MAIN RESULTS Using bolus-based EIT measures of lung perfusion as the reference frequency filtering techniques performed better than ensemble averaging and both techniques performed equally well across apnoea and ventilation data segments. SIGNIFICANCE Our results indicate the potential for use of filtering-based EIT measures of heart-frequency activity as a non-invasive proxy for contrast agent injection-based measures of lung perfusion.
Collapse
Affiliation(s)
- Symon Stowe
- Systems and Computer Engineering, Carleton University, Ottawa, Canada. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
27
|
Vasques F, Sanderson B, Barrett NA, Camporota L. Monitoring of regional lung ventilation using electrical impedance tomography. Minerva Anestesiol 2019; 85:1231-1241. [PMID: 30945516 DOI: 10.23736/s0375-9393.19.13477-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among recent lung imaging techniques and devices, electrical impedance tomography (EIT) can provide dynamic information on the distribution regional lung ventilation. EIT images possess a high temporal and functional resolution allowing the visualization of dynamic physiological and pathological changes on a breath-by-breath basis. EIT detects changes in electric impedance (i.e., changes in gas/fluid ratio) and describes them in real time, both visually through images and waveforms, and numerically, allowing the clinician to monitor disease evolution and response to treatment. The use of EIT in clinical practice is supported by several studies demonstrating a good correlation between impedance tomography data and other validated methods of measuring lung volume. In this review, we will provide an overview on the rationale, basic functioning and most common applications of EIT in the management of mechanically ventilated patients.
Collapse
Affiliation(s)
- Francesco Vasques
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Barnaby Sanderson
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Nicholas A Barrett
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK - .,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| |
Collapse
|
28
|
Rapin M, Braun F, Adler A, Wacker J, Frerichs I, Vogt B, Chetelat O. Wearable Sensors for Frequency-Multiplexed EIT and Multilead ECG Data Acquisition. IEEE Trans Biomed Eng 2019; 66:810-820. [DOI: 10.1109/tbme.2018.2857199] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Wang L. Three-Dimensional Holographic Electromagnetic Imaging for Accessing Brain Stroke. SENSORS (BASEL, SWITZERLAND) 2018; 18:3852. [PMID: 30423978 PMCID: PMC6263754 DOI: 10.3390/s18113852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
The authors recently developed a two-dimensional (2D) holographic electromagnetic induction imaging (HEI) for biomedical imaging applications. However, this method was unable to detect small inclusions accurately. For example, only one of two inclusions can be detected in the reconstructed image if the two inclusions were located at the same XY plane but in different Z-directions. This paper provides a theoretical framework of three-dimensional (3D) HEI to accurately and effectively detect inclusions embedded in a biological object. A numerical system, including a realistic head phantom, a 16-element excitation sensor array, a 16-element receiving sensor array, and image processing model has been developed to evaluate the effectiveness of the proposed method for detecting small stroke. The achieved 3D HEI images have been compared with 2D HEI images. Simulation results show that the 3D HEI method can accurately and effectively identify small inclusions even when two inclusions are located at the same XY plane but in different Z-directions. This preliminary study shows that the proposed method has the potential to develop a useful imaging tool for the diagnosis of neurological diseases and injuries in the future.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biomedical Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland 1001, New Zealand.
| |
Collapse
|
30
|
Concentric Ring Probe for Bioimpedance Spectroscopic Measurements: Design and Ex Vivo Feasibility Testing on Pork Oral Tissues. SENSORS 2018; 18:s18103378. [PMID: 30308986 PMCID: PMC6210762 DOI: 10.3390/s18103378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022]
Abstract
Many oral diseases, such as oral leukoplakia and erythroplakia, which have a high potential for malignant transformations, cause abnormal structural changes in the oral mucosa. These changes are clinically assessed by visual inspection and palpation despite their poor accuracy and subjective nature. We hypothesized that non-invasive bioimpedance spectroscopy (BIS) might be a viable option to improve the diagnostics of potentially malignant lesions. In this study, we aimed to design and optimize the measurement setup and to conduct feasibility testing on pork oral tissues. The contact pressure between a custom-made concentric ring probe and tissue was experimentally optimized. The effects of loading time and inter-electrode spacing on BIS spectra were also clarified. Tissue differentiation testing was performed for ex vivo pork oral tissues including palatinum, buccal mucosa, fat, and muscle tissue samples. We observed that the most reproducible results were obtained by using a loading weight of 200 g and a fixed time period under press, which was necessary to allow meaningful quantitative comparison. All studied tissues showed their own unique spectra, accompanied by significant differences in both impedance magnitude and phase (p ≤ 0.014, Kruskal-Wallis test). BIS shows promise, and further studies are warranted to clarify its potential to detect specific pathological tissue alterations.
Collapse
|
31
|
Hope J, Vanholsbeeck F, McDaid A. Drive and measurement electrode patterns for electrode impedance tomography (EIT) imaging of neural activity in peripheral nerve. Biomed Phys Eng Express 2018; 4. [DOI: 10.1088/2057-1976/aadff3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 11/12/2022]
|
32
|
Hao Z, Cui Z, Yue S, Wang H. Singular value decomposition based impulsive noise reduction in multi-frequency phase-sensitive demodulation of electrical impedance tomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:064702. [PMID: 29960571 DOI: 10.1063/1.5021058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As an important means in electrical impedance tomography (EIT), multi-frequency phase-sensitive demodulation (PSD) can be viewed as a matched filter for measurement signals and as an optimal linear filter in the case of Gaussian-type noise. However, the additive noise usually possesses impulsive noise characteristics, so it is a challenging task to reduce the impulsive noise in multi-frequency PSD effectively. In this paper, an approach for impulsive noise reduction in multi-frequency PSD of EIT is presented. Instead of linear filters, a singular value decomposition filter is employed as the pre-stage filtering module prior to PSD, which has advantages of zero phase shift, little distortion, and a high signal-to-noise ratio (SNR) in digital signal processing. Simulation and experimental results demonstrated that the proposed method can effectively eliminate the influence of impulsive noise in multi-frequency PSD, and it was capable of achieving a higher SNR and smaller demodulation error.
Collapse
Affiliation(s)
- Zhenhua Hao
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ziqiang Cui
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shihong Yue
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huaxiang Wang
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
33
|
Braun F, Proença M, Lemay M, Bertschi M, Adler A, Thiran JP, Solà J. Limitations and challenges of EIT-based monitoring of stroke volume and pulmonary artery pressure. Physiol Meas 2018; 39:014003. [DOI: 10.1088/1361-6579/aa9828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
|
35
|
Yamaguchi TF, Okamoto Y. Computational method for estimating boundary of abdominal subcutaneous fat for absolute electrical impedance tomography. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2909. [PMID: 28614900 DOI: 10.1002/cnm.2909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/15/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Abdominal fat accumulation is considered an essential indicator of human health. Electrical impedance tomography has considerable potential for abdominal fat imaging because of the low specific conductivity of human body fat. In this paper, we propose a robust reconstruction method for high-fidelity conductivity imaging by abstraction of the abdominal cross section using a relatively small number of parameters. Toward this end, we assume homogeneous conductivity in the abdominal subcutaneous fat area and characterize its geometrical shape by parameters defined as the ratio of the distance from the center to boundary of subcutaneous fat to the distance from the center to outer boundary in 64 equiangular directions. To estimate the shape parameters, the sensitivity of the noninvasively measured voltages with respect to the shape parameters is formulated for numerical optimization. Numerical simulations are conducted to demonstrate the validity of the proposed method. A 3-dimensional finite element method is used to construct a computer model of the human abdomen. The inverse problems of shape parameters and conductivities are solved concurrently by iterative forward and inverse calculations. As a result, conductivity images are reconstructed with a small systemic error of less than 1% for the estimation of the subcutaneous fat area. A novel method is devised for estimating the boundary of the abdominal subcutaneous fat. The fidelity of the overall reconstructed image to the reference image is significantly improved. The results demonstrate the possibility of realization of an abdominal fat scanner as a low-cost, radiation-free medical device.
Collapse
Affiliation(s)
- Tohru F Yamaguchi
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka,, Sumida-ku, Tokyo 131-8501, Japan
| | - Yoshiwo Okamoto
- Department of Electrical, Electronics, and Computer Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma,, Narashino-shi, Chiba 275-0016, Japan
| |
Collapse
|
36
|
|
37
|
Hao Z, Yue S, Sun B, Wang H. Optimal distance of multi-plane sensor in three-dimensional electrical impedance tomography. Comput Assist Surg (Abingdon) 2017; 22:326-338. [DOI: 10.1080/24699322.2017.1389412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Zhenhua Hao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Shihong Yue
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Benyuan Sun
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Huaxiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
38
|
Muller PA, Mueller JL, Mellenthin MM. Real-Time Implementation of Calderón's Method on Subject-Specific Domains. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1868-1875. [PMID: 28436855 DOI: 10.1109/tmi.2017.2695893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A real-time implementation of Calderón's method for the reconstruction of a 2-D conductivity from electrical impedance tomography data is presented, in which domain-specific modeling is taken into account. This is the first implementation of Calderón's method that accounts for correct modeling of non-symmetric domain boundaries in image reconstruction. The domain-specific Calderón's method is derived and reconstructions from experimental tank data are presented, quantifying the distortion when correct modeling is not included in the reconstruction algorithm. Reconstructions from human subject volunteers are presented, demonstrating the method's effectiveness for imaging changes due to ventilation and perfusion in the human thorax.
Collapse
|
39
|
Richter I, Alajbeg I, Boras VV, Rogulj AA, Brailo V. Mapping Electrical Impedance Spectra of the Healthy Oral Mucosa: a Pilot Study. Acta Stomatol Croat 2016; 49:331-9. [PMID: 27688418 DOI: 10.15644/asc49/4/9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE Electrical impedance is the resistance to the electric current flow through a tissue and depends on the tissue's structure and chemical composition. The aim of this study was to map electrical impedance spectra for each region of the healthy oral mucosa. MATERIALS AND METHODS Electrical impedance was measured in 30 participants with healthy oral mucosa. Measurements were performed in 14 points on the right and the left side of the oral cavity, and repeated after 7 and 14 days respectively. RESULTS The lowest values were measured on the tongue dorsum and the highest values were measured on the hard palate. No significant differences were found between the right and the left side. Significantly higher values were found in females on the upper labial mucosa, tongue dorsum and the ventral tongue. Significant difference between smokers and non-smokers on the lower labial mucosa and floor of the mouth was found. Electrical impedance was negatively correlated with salivary flow on the upper labial mucosa, hard palate, tongue dorsum and sublingual mucosa. Higher variability of measurements was found at low frequencies. CONCLUSIONS Electrical impedance mostly depends on the degree of mucosal keratinization. Demographic and clinical factors probably affect its values. Further studies with bigger number of participants are required.
Collapse
Affiliation(s)
- Ivica Richter
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, Croatia
| | - Ivan Alajbeg
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, Croatia
| | - Vanja Vučićević Boras
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, Croatia
| | - Ana Andabak Rogulj
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, Croatia
| | - Vlaho Brailo
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, Croatia
| |
Collapse
|
40
|
Ericsson E, Tesselaar E, Sjöberg F. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography. PLoS One 2016; 11:e0155913. [PMID: 27253433 PMCID: PMC4890811 DOI: 10.1371/journal.pone.0155913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion.
Collapse
Affiliation(s)
- Elin Ericsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| | - Folke Sjöberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Hand and Plastic Surgery and the Burn Clinic, Linköping University, Linköping, Sweden
| |
Collapse
|
41
|
Packham B, Barnes G, Dos Santos GS, Aristovich K, Gilad O, Ghosh A, Oh T, Holder D. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography. Physiol Meas 2016; 37:951-67. [PMID: 27203477 PMCID: PMC5717540 DOI: 10.1088/0967-3334/37/6/951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p < 0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.
Collapse
Affiliation(s)
- B Packham
- Department of Medical Physics & Bioengineering, University College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Aristovich KY, Packham BC, Koo H, Santos GSD, McEvoy A, Holder DS. Imaging fast electrical activity in the brain with electrical impedance tomography. Neuroimage 2015; 124:204-213. [PMID: 26348559 PMCID: PMC4655915 DOI: 10.1016/j.neuroimage.2015.08.071] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/16/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2ms and <200μm during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7×5×2mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures.
Collapse
Affiliation(s)
- Kirill Y Aristovich
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK.
| | - Brett C Packham
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Hwan Koo
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Gustavo Sato Dos Santos
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Andy McEvoy
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London, WC1N 3BG, UK
| | - David S Holder
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
43
|
Roth CJ, Ehrl A, Becher T, Frerichs I, Schittny JC, Weiler N, Wall WA. Correlation between alveolar ventilation and electrical properties of lung parenchyma. Physiol Meas 2015; 36:1211-26. [DOI: 10.1088/0967-3334/36/6/1211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Hsu CF, Cheng JS, Lin WC, Ko YF, Cheng KS, Lin SH, Chen CW. Electrical impedance tomography monitoring in acute respiratory distress syndrome patients with mechanical ventilation during prolonged positive end-expiratory pressure adjustments. J Formos Med Assoc 2015; 115:195-202. [PMID: 25843526 DOI: 10.1016/j.jfma.2015.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/PURPOSE The time required to reach oxygenation equilibrium after positive end-expiratory pressure (PEEP) adjustments in mechanically ventilated patients with acute respiratory distress syndrome (ARDS) is unclear. We used electrical impedance tomography to elucidate gas distribution and factors related to oxygenation status following PEEP in patients with ARDS. METHODS Nineteen mechanically ventilated ARDS patients were placed on baseline PEEP (PEEPB) for 1 hour, PEEPB - 4 cmH2O PEEP (PEEPL) for 30 minutes, and PEEPB + 4 cmH2O PEEP (PEEPH) for 1 hour. Tidal volume and respiratory rate were similar. Impedance changes, respiratory parameters, and arterial blood gases were measured at baseline, 5 minutes, and 30 minutes after PEEPL, and 5 minutes, 15 minutes, 30 minutes, and 1 hour after PEEPH. RESULTS PaO2/fraction of inspired oxygen (P/F ratio) decreased quickly from PEEPB to PEEPL, and stabilized 5 minutes after PEEPL. However the P/F ratio progressively increased from PEEPL to PEEPH, and a significantly higher P/F ratio and end-expiratory lung impedance were found at 60 minutes compared to 5 minutes after PEEPH. The end-expiratory lung impedance level significantly correlated with P/F ratio (p < 0.001). With increasing PEEP, dorsal ventilation significantly increased; however, regional ventilation did not change over time with PEEP level. CONCLUSION Late improvements in oxygenation following PEEP escalation are probably due to slow recruitment in ventilated ARDS patients. Electrical impedance tomography may be an appropriate tool to assess recruitment and oxygenation status in patients with changes in PEEP.
Collapse
Affiliation(s)
- Chia-Fu Hsu
- Medical Intensive Care Unit, Department of Internal Medicine, National Cheng Kung University Affiliated Hospital, Tainan, Taiwan
| | - Jen-Suo Cheng
- Medical Intensive Care Unit, Department of Internal Medicine, National Cheng Kung University Affiliated Hospital, Tainan, Taiwan
| | - Wei-Chi Lin
- Medical Intensive Care Unit, Department of Internal Medicine, National Cheng Kung University Affiliated Hospital, Tainan, Taiwan
| | - Yen-Fen Ko
- Bioengineering Institute, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Sheng Cheng
- Bioengineering Institute, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Wen Chen
- Medical Intensive Care Unit, Department of Internal Medicine, National Cheng Kung University Affiliated Hospital, Tainan, Taiwan; Medical Device Innovation Center, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
45
|
Kao TJ, Amm B, Wang X, Boverman G, Shoudy D, Sabatini J, Ashe J, Newell J, Saulnier G, Isaacson D, Davenport D. Real-time 3D electrical impedance imaging for ventilation and perfusion of the lung in lateral decubitus position. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:1135-8. [PMID: 25570163 DOI: 10.1109/embc.2014.6943795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report a prototype Electrical Impedance Imaging System. It is able to detect the gravity-induced changes in the distributions of perfusion and ventilation in the lung between supine and lateral decubitus positions. Impedance data were collected on healthy volunteer subjects and 3D reconstructed images were produced in real-time, 20 frames per second on site, without using averaging or a contrast agent. Imaging data also can be reconstructed offline for further analysis.
Collapse
|
46
|
Ogura T. Non-destructive observation of intact bacteria and viruses in water by the highly sensitive frequency transmission electric-field method based on SEM. Biochem Biophys Res Commun 2014; 450:1684-9. [DOI: 10.1016/j.bbrc.2014.07.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
|
47
|
Pikkemaat R, Lundin S, Stenqvist O, Hilgers RD, Leonhardt S. Recent Advances in and Limitations of Cardiac Output Monitoring by Means of Electrical Impedance Tomography. Anesth Analg 2014; 119:76-83. [DOI: 10.1213/ane.0000000000000241] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
LI Y, TESSELAAR E, BORGES JB, BÖHM SH, SJÖBERG F, JANEROT-SJÖBERG B. Hyperoxia affects the regional pulmonary ventilation/perfusion ratio: an electrical impedance tomography study. Acta Anaesthesiol Scand 2014; 58:716-25. [PMID: 24762189 DOI: 10.1111/aas.12323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The way in which hyperoxia affects pulmonary ventilation and perfusion is not fully understood. We investigated how an increase in oxygen partial pressure in healthy young volunteers affects pulmonary ventilation and perfusion measured by thoracic electrical impedance tomography (EIT). METHODS Twelve semi-supine healthy male volunteers aged 21-36 years were studied while breathing room air and air-oxygen mixtures (FiO2) that resulted in predetermined transcutaneous oxygen partial pressures (tcPO2) of 20, 40 and 60 kPa. The magnitude of ventilation (ΔZv) and perfusion (ΔZQ)-related changes in cyclic impedance variations, were determined using an EIT prototype equipped with 32 electrodes around the thorax. Regional changes in ventral and dorsal right lung ventilation (V) and perfusion (Q) were estimated, and V/Q ratios calculated. RESULTS There were no significant changes in ΔZv with increasing tcPO2 levels. ΔZQ in the dorsal lung increased with increasing tcPO2 (P = 0.01), whereas no such change was seen in the ventral lung. There was a simultaneous decrease in V/Q ratio in the dorsal region during hyperoxia (P = 0.04). Two subjects did not reach a tcPO2 of 60 kPa despite breathing 100% oxygen. CONCLUSION These results indicate that breathing increased concentrations of oxygen induces pulmonary vasodilatation in the dorsal lung even at small increases in FiO2. Ventilation remains unchanged. Local mismatch of ventilation and perfusion occurs in young healthy men, and the change in ventilation/perfusion ratio can be determined non-invasively by EIT.
Collapse
Affiliation(s)
- Y. LI
- Department of Anesthesiology; Shaoxing People's Hospital of Zhejiang University; Shaoxing City China
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - E. TESSELAAR
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - J. B. BORGES
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anesthesiology & Critical Care; Uppsala University; Uppsala Sweden
- Laboratório de Pneumologia LIM-09; Disciplina de Pneumologia; Heart Institute (Incor); Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo; São Paulo Brazil
| | | | - F. SJÖBERG
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
- Department of Hand; Plastic Surgery and Intensive Care; Linköping University Hospital; Linköping Sweden
| | - B. JANEROT-SJÖBERG
- Department of Clinical Science; Intervention and Technology; Karolinska Institutet; Stockholm Sweden
- Department of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
- School of Technology and Health; KTH; Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
49
|
Czaplik M, Antink CH, Rossaint R, Leonhardt S. Application of internal electrodes to the oesophageal and tracheal tube in an animal trial: evaluation of its clinical and technical potentiality in electrical impedance tomography. J Clin Monit Comput 2014; 28:299-308. [PMID: 24281746 DOI: 10.1007/s10877-013-9536-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022]
Abstract
Electrical impedance tomography (EIT) is of potential medical interest e.g., to optimize ventilator settings during mechanical ventilation. Nevertheless there are still several challenges. Although electrode belts are commonly used and promoted, they are not necessarily adequate for the long-term monitoring of patients in intensive-care units (ICU). ICU patients are usually equipped with breathing tubes and feeding tubes, ideal surfaces to attach EIT electrodes to. The aim of our study was therefore to examine the potentiality of internal electrodes in a porcine animal trial. Following an animal trial protocol studying acute lung injury, additional EIT measurements were obtained both with conventional electrodes set upon a rubber belt and after having moved the electrodes internally in seven pigs. For this reason the two most dorsally located electrodes were selected. An adjacent stimulation and measurement pattern was used, and resulting voltages in the time and frequency domains as well as within reconstructed images were examined to compare perfusion and ventilation data qualitatively and quantitatively. Particularly, lung morphology as well as signal strength for both the mediastinal and lung region were studied. All animals were submitted to the additional protocol without any adverse events. Distinguishability of lungs was improved in reconstructed frames. The resulting sensitivity of measured electrical impedance was enhanced around the mediastinal region and even cardiac-related activity was significantly increased by a factor of up to 6. In conclusion the application of internal electrodes appears to be beneficial for diverse clinical purposes and should be addressed in further studies.
Collapse
Affiliation(s)
- Michael Czaplik
- Department of Anaesthesiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
50
|
Ogura T. Direct observation of unstained biological specimens in water by the frequency transmission electric-field method using SEM. PLoS One 2014; 9:e92780. [PMID: 24651483 PMCID: PMC3961424 DOI: 10.1371/journal.pone.0092780] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Scanning electron microscopy (SEM) is a powerful tool for the direct visualization of biological specimens at nanometre-scale resolution. However, images of unstained specimens in water using an atmospheric holder exhibit very poor contrast and heavy radiation damage. Here, we present a new form of microscopy, the frequency transmission electric-field (FTE) method using SEM, that offers low radiation damage and high-contrast observation of unstained biological samples in water. The wet biological specimens are enclosed in two silicon nitride (SiN) films. The metal-coated SiN film is irradiated using a focused modulation electron beam (EB) at a low-accelerating voltage. A measurement terminal under the sample holder detects the electric-field frequency signal, which contains structural information relating to the biological specimens. Our results in very little radiation damage to the sample, and the observation image is similar to the transmission image, depending on the sample volume. Our developed method can easily be utilized for the observation of various biological specimens in water.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|