Wang W, Díaz-Méndez R, Wallin M, Lidmar J, Babaev E. Melting of a two-dimensional monodisperse cluster crystal to a cluster liquid.
Phys Rev E 2019;
99:042140. [PMID:
31108717 DOI:
10.1103/physreve.99.042140]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/07/2022]
Abstract
Monodisperse ensembles of particles that have cluster crystalline phases at low temperatures can model a number of physical systems, such as vortices in type-1.5 superconductors, colloidal suspensions, and cold atoms. In this work, we study a two-dimensional cluster-forming particle system interacting via an ultrasoft potential. We present a simple mean-field characterization of the cluster-crystal ground state, corroborating with Monte Carlo simulations for a wide range of densities. The efficiency of several Monte Carlo algorithms is compared, and the challenges of thermal equilibrium sampling are identified. We demonstrate that the liquid to cluster-crystal phase transition is of first order and occurs in a single step, and the liquid phase is a cluster liquid.
Collapse