1
|
Wang Y, Shao T. Evolution of liquid phase during homogenous non-equilibrium melting of Ta at superheating temperature. J Chem Phys 2024; 161:054503. [PMID: 39087545 DOI: 10.1063/5.0210714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Homogenous melting at superheating temperature is commonly described by classical nucleation theory (CNT), but the atomic mechanism of the formation and development of critical liquid nuclei is still unclear. Molecular dynamics simulations were conducted to analyze the melting process of Ta. It is found that the process of subcritical liquid clusters evolving into critical liquid nucleus occupies most of the melting time, and merging between neighboring liquid clusters is the main path for subcritical liquid clusters to grow in size. Total melting time is strongly affected by the distribution of formation sites of subcritical liquid clusters, which has been considered random in homogenous melting. This work depicts a clear picture of the formation and development of liquid phase during the homogeneous melting process at superheating temperature and suggests an internal factor of melting mechanism.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, People's Republic of China
| | - Tianmin Shao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Zhang J, Zhang H, Douglas JF. A closer examination of the nature of atomic motion in the interfacial region of crystals upon approaching melting. J Chem Phys 2024; 160:114506. [PMID: 38511662 DOI: 10.1063/5.0197386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Although crystalline materials are often conceptualized as involving a static lattice configuration of particles, it has recently become appreciated that string-like collective particle exchange motion is a ubiquitous and physically important phenomenon in both the melting and interfacial dynamics of crystals. This type of collective motion has been evidenced in melting since early simulations of hard disc melting by Alder et al. [Phys. Rev. Lett. 11(6), 241-243 (1963)], but a general understanding of its origin, along with its impact on melting and the dynamics of crystalline materials, has been rather slow to develop. We explore this phenomenon further by focusing on the interfacial dynamics of a model crystalline Cu material using molecular dynamics simulations where we emphasize the geometrical nature and spatial extent of the atomic trajectories over the timescale that they are caged, and we also quantify string-like collective motion on the timescale of the fast β-relaxation time, τf, i.e., "stringlets." Direct visualization of the atomic trajectories in their cages over the timescale over which the cage persists indicates that they become progressively more anisotropic upon approaching the melting temperature Tm. The stringlets, dominating the large amplitude atomic motion in the fast dynamics regime, are largely localized to the crystal interfacial region and correspond to "excess" modes in the density of states that give rise to a "boson peak." Moreover, interstitial point defects occur in direct association with the stringlets, demonstrating a link between classical defect models of melting and more recent studies of melting emphasizing the role of this kind of collective motion.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
3
|
de With G. Melting Is Well-Known, but Is It Also Well-Understood? Chem Rev 2023; 123:13713-13795. [PMID: 37963286 PMCID: PMC10722469 DOI: 10.1021/acs.chemrev.3c00489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Contrary to continuous phase transitions, where renormalization group theory provides a general framework, for discontinuous phase transitions such a framework seems to be absent. Although the thermodynamics of the latter type of transitions is well-known and requires input from two phases, for melting a variety of one-phase theories and models based on solids has been proposed, as a generally accepted theory for liquids is (yet) missing. Each theory or model deals with a specific mechanism using typically one of the various defects (vacancies, interstitials, dislocations, interstitialcies) present in solids. Furthermore, recognizing that surfaces are often present, one distinguishes between mechanical or bulk melting and thermodynamic or surface-mediated melting. After providing the necessary preliminaries, we discuss both types of melting in relation to the various defects. Thereafter we deal with the effect of pressure on the melting process, followed by a discussion along the line of type of materials. Subsequently, some other aspects and approaches are dealt with. An attempt to put melting in perspective concludes this review.
Collapse
Affiliation(s)
- Gijsbertus de With
- Laboratory of Physical Chemistry, Eindhoven University of Technology, Het Kranenveld 14, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Zhang Y, Wang Y, Huang Y, Wang J, Liang Z, Hao L, Gao Z, Li J, Wu Q, Zhang H, Liu Y, Sun J, Lin JF. Collective motion in hcp-Fe at Earth's inner core conditions. Proc Natl Acad Sci U S A 2023; 120:e2309952120. [PMID: 37782810 PMCID: PMC10576103 DOI: 10.1073/pnas.2309952120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
Earth's inner core is predominantly composed of solid iron (Fe) and displays intriguing properties such as strong shear softening and an ultrahigh Poisson's ratio. Insofar, physical mechanisms to explain these features coherently remain highly debated. Here, we have studied longitudinal and shear wave velocities of hcp-Fe (hexagonal close-packed iron) at relevant pressure-temperature conditions of the inner core using in situ shock experiments and machine learning molecular dynamics (MLMD) simulations. Our results demonstrate that the shear wave velocity of hcp-Fe along the Hugoniot in the premelting condition, defined as T/Tm (Tm: melting temperature of iron) above 0.96, is significantly reduced by ~30%, while Poisson's ratio jumps to approximately 0.44. MLMD simulations at 230 to 330 GPa indicate that collective motion with fast diffusive atomic migration occurs in premelting hcp-Fe primarily along [100] or [010] crystallographic direction, contributing to its elastic softening and enhanced Poisson's ratio. Our study reveals that hcp-Fe atoms can diffusively migrate to neighboring positions, forming open-loop and close-loop clusters in the inner core conditions. Hcp-Fe with collective motion at the inner core conditions is thus not an ideal solid previously believed. The premelting hcp-Fe with collective motion behaves like an extremely soft solid with an ultralow shear modulus and an ultrahigh Poisson's ratio that are consistent with seismic observations of the region. Our findings indicate that premelting hcp-Fe with fast diffusive motion represents the underlying physical mechanism to help explain the unique seismic and geodynamic features of the inner core.
Collapse
Affiliation(s)
- Youjun Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu610065, China
- International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu610059, China
| | - Yong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Yuqian Huang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu610065, China
| | - Junjie Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Zhixin Liang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Long Hao
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, China
| | - Zhipeng Gao
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, China
| | - Jun Li
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, China
| | - Qiang Wu
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, China
| | - Hong Zhang
- College of Physics, Sichuan University, Chengdu610065, China
| | - Yun Liu
- International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu610059, China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Jung-Fu Lin
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|