1
|
Guidolin C, Rio E, Cerbino R, Giavazzi F, Salonen A. Matrix Viscoelasticity Decouples Bubble Growth and Mobility in Coarsening Foams. PHYSICAL REVIEW LETTERS 2024; 133:088202. [PMID: 39241727 DOI: 10.1103/physrevlett.133.088202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 09/09/2024]
Abstract
Pressure-driven coarsening triggers bubble rearrangements in liquid foams. Our experiments show that changing the continuous phase rheology can alter these internal bubble dynamics without influencing the coarsening kinetics. Through bubble tracking, we find that increasing the matrix yield stress permits bubble growth without stress relaxation via neighbor-switching events, promoting more spatially homogeneous rearrangements and decoupling bubble growth from mobility. This eventually leads to a structural change that directly impacts the foam mechanical and stability properties, essential for applications in various technological and industrial contexts.
Collapse
|
2
|
Sheung JY, Garamella J, Kahl SK, Lee BY, McGorty RJ, Robertson-Anderson RM. Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites. FRONTIERS IN PHYSICS 2022; 10:1055441. [PMID: 37547053 PMCID: PMC10403238 DOI: 10.3389/fphy.2022.1055441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.
Collapse
Affiliation(s)
- Janet Y. Sheung
- W. M. Keck Science Department, Scripps College, Claremont, CA, United States
- W. M. Keck Science Department, Pitzer College, Claremont, CA, United States
| | - Jonathan Garamella
- Physics and Biophysics Department, University of San Diego, San Diego, CA, United States
| | - Stella K. Kahl
- W. M. Keck Science Department, Scripps College, Claremont, CA, United States
| | - Brian Y. Lee
- W. M. Keck Science Department, Pitzer College, Claremont, CA, United States
| | - Ryan J. McGorty
- Physics and Biophysics Department, University of San Diego, San Diego, CA, United States
| | | |
Collapse
|
3
|
Crowding and confinement act in concert to slow DNA diffusion within cell-sized droplets. iScience 2022; 25:105122. [PMID: 36185357 PMCID: PMC9523355 DOI: 10.1016/j.isci.2022.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Dynamics of biological macromolecules, such as DNA, in crowded and confined environments are critical to understanding cellular processes such as transcription, infection, and replication. However, the combined effects of cellular confinement and crowding on macromolecular dynamics remain poorly understood. Here, we use differential dynamic microscopy to investigate the diffusion of large DNA molecules confined in cell-sized droplets and crowded by dextran polymers. We show that confined and crowded DNA molecules exhibit universal anomalous subdiffusion with scaling that is insensitive to the degree of confinement and crowding. However, effective DNA diffusion coefficients Deff decrease up to 2 orders of magnitude as droplet size decreases—an effect that is enhanced by increased crowding. We mathematically model the coupling of crowding and confinement by combining polymer scaling theories with confinement-induced depletion effects. The generality and tunability of our system and models render them applicable to elucidating wide-ranging crowded and confined systems. DNA diffusion measured in cell-sized droplets with differential dynamic microscopy Combination of crowding and confinement leads to subdiffusion and slowing Diffusion coefficients of DNA decrease strongly with decreasing droplet size Polymer scaling theories and depletion effects predict observed dynamics
Collapse
|
4
|
Lavergne FA, Sollich P, Trappe V. Delayed elastic contributions to the viscoelastic response of foams. J Chem Phys 2022; 156:154901. [PMID: 35459308 DOI: 10.1063/5.0085773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the slow viscoelastic response of a foam is that of a power-law fluid with a terminal relaxation. Investigations of the foam mechanics in creep and recovery tests reveal that the power-law contribution is fully reversible, indicative of a delayed elastic response. We demonstrate how this contribution fully accounts for the non-Maxwellian features observed in all tests, probing the linear mechanical response function. The associated power-law spectrum is consistent with soft glassy rheology of systems with mechanical noise temperatures just above the glass transition [Fielding et al., J. Rheol. 44, 323 (2000)] and originates from a combination of superdiffusive bubble dynamics and stress diffusion, as recently evidenced in simulations of coarsening foam [Hwang et al., Nat. Mater. 15, 1031 (2016)].
Collapse
Affiliation(s)
- François A Lavergne
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | - Peter Sollich
- Institute for Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Véronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Pastore R, Giavazzi F, Greco F, Cerbino R. Multiscale heterogeneous dynamics in two-dimensional glassy colloids. J Chem Phys 2022; 156:164906. [DOI: 10.1063/5.0087590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
On approaching the glass transition, a dense colloid exhibits a dramatic slowdown with minute structural changes. Most microscopy experiments directly follow the motion of individual particles in real space, whereas scattering experiments typically probe the collective dynamics in reciprocal space, at variable wavevector q. Multiscale studies of glassy dynamics are experimentally demanding and thus seldom performed. By using two-dimensional hard-sphere colloids at various area fractions φ, we show here that Differential Dynamic Microscopy (DDM) can be effectively used to measure the collective dynamics of a glassy colloid in a range of q within a single experiment. As φ is increased, the single decay of the intermediate scattering functions is progressively replaced by a more complex relaxation that we fit to a sum of two stretched-exponential decays. The slowest process, corresponding to the long-time particle escapes from caging, has a characteristic time τs = 1/(DLq2 ) with diffusion coefficient DL ∼ (φc −φ)2.8 , and φc ≈ 0.81. The fast process exhibits, instead, a non-Brownian scaling of the characteristic time τf(q) and a relative amplitude a(q) that monotonically increases with q. Despite the non-Brownian nature of τf(q), we succeed in estimating the short-time diffusion coefficient Dcage, whose φ-dependence is practically negligible compared to the one of DL. Finally, we extend DDM to measure the q-dependent dynamical susceptibility χ4(q,t), a powerful yet hard-to-access multiscale indicator of dynamical heterogeneities. Our results show that DDM is a convenient tool to study the dynamics of colloidal glasses over a broad range of time and length-scales.
Collapse
Affiliation(s)
- Raffaele Pastore
- Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Italy
| | | | | | - Roberto Cerbino
- Physics, Universität Wien Computergestützte Physik und Physik der Weichen Materie, Austria
| |
Collapse
|
6
|
Pastore R, Mensitieri G, Vlassopoulos D, Greco F. Glasses and gels: a crossroad of molecular liquids, polymers and colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:090401. [PMID: 34889780 DOI: 10.1088/1361-648x/ac3cf3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples 'Federico II', P.le Tecchio 80, Naples 80125, Italy
| | - Giuseppe Mensitieri
- Department of Chemical, Materials and Production Engineering, University of Naples 'Federico II', P.le Tecchio 80, Naples 80125, Italy
| | - Dimitris Vlassopoulos
- Department of Materials Science and Technology, University of Crete, and Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples 'Federico II', P.le Tecchio 80, Naples 80125, Italy
| |
Collapse
|
7
|
Gu M, Luo Y, He Y, Helgeson ME, Valentine MT. Uncertainty quantification and estimation in differential dynamic microscopy. Phys Rev E 2021; 104:034610. [PMID: 34654087 DOI: 10.1103/physreve.104.034610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022]
Abstract
Differential dynamic microscopy (DDM) is a form of video image analysis that combines the sensitivity of scattering and the direct visualization benefits of microscopy. DDM is broadly useful in determining dynamical properties including the intermediate scattering function for many spatiotemporally correlated systems. Despite its straightforward analysis, DDM has not been fully adopted as a routine characterization tool, largely due to computational cost and lack of algorithmic robustness. We present statistical analysis that quantifies the noise, reduces the computational order, and enhances the robustness of DDM analysis. We propagate the image noise through the Fourier analysis, which allows us to comprehensively study the bias in different estimators of model parameters, and we derive a different way to detect whether the bias is negligible. Furthermore, through use of Gaussian process regression (GPR), we find that predictive samples of the image structure function require only around 0.5%-5% of the Fourier transforms of the observed quantities. This vastly reduces computational cost, while preserving information of the quantities of interest, such as quantiles of the image scattering function, for subsequent analysis. The approach, which we call DDM with uncertainty quantification (DDM-UQ), is validated using both simulations and experiments with respect to accuracy and computational efficiency, as compared with conventional DDM and multiple particle tracking. Overall, we propose that DDM-UQ lays the foundation for important new applications of DDM, as well as to high-throughput characterization.
Collapse
Affiliation(s)
- Mengyang Gu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, California 93106, USA
| | - Yimin Luo
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Yue He
- Department of Statistics and Applied Probability, University of California, Santa Barbara, California 93106, USA
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Cerbino R, Giavazzi F, Helgeson ME. Differential dynamic microscopy for the characterization of polymer systems. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Cerbino
- Faculty of Physics University of Vienna Vienna Austria
- Department of Medical Biotechnology and Translational Medicine University of Milan Segrate Italy
| | - Fabio Giavazzi
- Department of Medical Biotechnology and Translational Medicine University of Milan Segrate Italy
| | - Matthew E. Helgeson
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara California USA
| |
Collapse
|
9
|
You R, McGorty R. Two-color differential dynamic microscopy for capturing fast dynamics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:023702. [PMID: 33648121 DOI: 10.1063/5.0039177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Differential dynamic microscopy (DDM) is increasingly used in the fields of soft matter physics and biophysics to extract the dynamics of microscopic objects across a range of wavevectors by optical microscopy. Standard DDM is limited to detecting dynamics no faster than the camera frame rate. We report on an extension to DDM where we sequentially illuminate the sample with spectrally distinct light and image with a color camera. By pulsing blue and then red light separated by a lag time much smaller than the camera's exposure time, we are able to use this two-color DDM method to measure dynamics occurring much faster than the camera frame rate.
Collapse
Affiliation(s)
- Ruilin You
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| |
Collapse
|