1
|
Huang Y, Wang M. Electrokinetics at liquid-liquid interfaces: Physical models and transport mechanisms. Adv Colloid Interface Sci 2025; 342:103518. [PMID: 40280052 DOI: 10.1016/j.cis.2025.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
The electrification effects and electrokinetic flow phenomena at immiscible liquid-liquid interfaces have been a subject of scientific inquiry for over a century. Unlike solid-liquid interfaces, liquid-liquid interfaces exhibit not only multiphysical and cross-scale characteristics but also diffuse soft properties, including finite thickness, fluidity, ion adsorbability, and permeability, which introduces diverse interfacial charging mechanisms and conductive dielectric properties, imparting unique characteristics to electrokinetic multiphase flow systems. Electrokinetic multiphase hydrodynamics (EKmHD), grounded in electrochemistry and colloid and interface science, has experienced renewed interest in recent years. This is particularly evident in systems such as the interface between two immiscible electrolyte solutions (ITIES) in electrochemistry, self-propelling droplets in physicochemical hydrodynamics, and digital microfluidics in electromechanics. The multiphase diffuse soft nature of charged liquid-liquid interfaces introduces novel physical scales and theoretical dimensions, positioning EKmHD as a potential foundation for a new interdisciplinary field rather than merely a cross-disciplinary area. This review highlights the need for an integrated research approach that combines interfacial charging mechanisms with electrokinetic flows, alongside a cross-scale modeling framework for interfacial multiphysical transport. It systematically organizes the characteristics of liquid-liquid interfaces from the perspectives of charging mechanisms and electrokinetic behaviors, with particular emphasis on spontaneous partition- and adsorption-induced charging at the interface, and the strong coupling between multiphase diffuse soft interface flow and ion transport. Furthermore, the paper comprehensively summarizes the transport mechanisms of electrokinetic multiphase flows concerning interfacial ion transport and fluid flow, while refining the corresponding dominant dimensionless parameters. Additionally, it systematically consolidates current understanding of typical electrokinetic multiphase flow scenarios, with special focus on potential future research directions. These include the electrokinetic double-sided coupling effects in ITIES systems, solidification and nonlinear effects in droplet/bubble electrophoresis, the validity of the leaky dielectric model, electrokinetic instabilities of jets and ion-selective soft interfaces, and the active and passive control of two-phase electrokinetic wetting dynamics and displacement.
Collapse
Affiliation(s)
- Yunfan Huang
- Department of Engineering Mechanics and Laboratory of APS, Tsinghua University, Beijing 100084, China
| | - Moran Wang
- Department of Engineering Mechanics and Laboratory of APS, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Tavakol M, Newbold A, Voïtchovsky K. Electrified Nanogaps under an AC Field: A Molecular Dynamics Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21050-21059. [PMID: 39691902 PMCID: PMC11648076 DOI: 10.1021/acs.jpcc.4c05105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
The organization and dynamics of ions and water molecules at electrified solid-liquid interfaces are generally well understood under static fields, especially for macroscopic electrochemical systems. In contrast, studies involving alternating (AC) fields tend to be more challenging. In nanoscale systems, added complexity can arise from interfacial interactions and the need to consider ions and molecules explicitly. Here we use molecular dynamics (MD) simulations to investigate the behavior of NaCl aqueous solutions at different concentrations confined in nanogaps under AC fields ranging from 10 MHz to 10 GHz. We explore the impact of the gap size (2-60 nm) and of the solid material composing the electrode (silica, charged silica, or gold). Analysis of the transient and stable responses of the system shows that the total transverse dipole M z,total formed by the water molecules and the ions across the gap is always able to counter the applied field regardless of AC frequency, NaCl concentration, or electrode material. As expected, the ions lag at higher frequencies, leading to a capacitive behavior. This effect is fully compensated by water dipoles that lead the field, reaching a maximum lead at a specific frequency which depends on salt concentration and gap size. Changing the gap size affects the magnitude of M z,total. Finally, the electrode material is shown to affect the electrolyte behavior in the gap region. We anticipate these results to be useful for nanoscale dielectric spectroscopy, including scanning probes.
Collapse
|
3
|
Uematsu Y, Iwai S, Konishi M, Inagi S. Zeta Potentials of Cotton Membranes in Acetonitrile Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39279588 PMCID: PMC11428183 DOI: 10.1021/acs.langmuir.4c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Solid surfaces in contact with nonaqueous solvents play a key role in electrochemistry, analytical chemistry, and industrial chemistry. In this work, the zeta potentials of cotton membranes in acetonitrile solutions were determined by streaming potential and bulk conductivity measurements. By applying the Gouy-Chapman theory and the Langmuir adsorption isotherm of ions to the experimental data, the mechanism of the electrification at the cotton/acetonitrile interface is revealed for the first time to be solely due to ion adsorption on the surface, rather than proton dissociation at the interface. Different salts were found to produce opposite signs of the zeta potentials. This behavior can be attributed to ion solvation effects and the strong ordering of acetonitrile molecules at the interface. Furthermore, a trend of the electroviscous effect was observed, in agreement with the standard electrokinetic theory. These findings demonstrate that electrokinetics in acetonitrile, a polar aprotic solvent, can be treated in the same manner as in water.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department
of Physics and Information Technology, Kyushu
Institute of Technolohy, Iizuka 820-8502, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Suguru Iwai
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Mariko Konishi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
4
|
Xu D, Yan M, Xie Y. Energy harvesting from water streaming at charged surface. Electrophoresis 2024; 45:244-265. [PMID: 37948329 DOI: 10.1002/elps.202300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Water flowing at a charged surface may produce electricity, known as streaming current/potentials, which may be traced back to the 19th century. However, due to the low gained power and efficiencies, the energy conversion from streaming current was far from usable. The emergence of micro/nanofluidic technology and nanomaterials significantly increases the power (density) and energy conversion efficiency. In this review, we conclude the fundamentals and recent progress in electrical double layers at the charged surface. We estimate the generated power by hydrodynamic energy dissipation in multi-scaling flows considering the viscous systems with slipping boundary and inertia systems. Then, we review the coupling of volume flow and current flow by the Onsager relation, as well as the figure of merits and efficiency. We summarize the state-of-the-art of electrokinetic energy conversions, including critical performance metrics such as efficiencies, power densities, and generated voltages in various systems. We discuss the advantages and possible constraints by the figure of merits, including single-phase flow and flying droplets.
Collapse
Affiliation(s)
- Daxiang Xu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Meng Yan
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yanbo Xie
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
- School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an, P. R. China
| |
Collapse
|
5
|
Boon WQ, Dijkstra M, van Roij R. Coulombic Surface-Ion Interactions Induce Nonlinear and Chemistry-Specific Charging Kinetics. PHYSICAL REVIEW LETTERS 2023; 130:058001. [PMID: 36800467 DOI: 10.1103/physrevlett.130.058001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
While important for many industrial applications, chemical reactions responsible for the charging of solids in water are often poorly understood. We theoretically investigate the charging kinetics of solid-liquid interfaces and find that the time-dependent equilibration of surface charge contains key information not only on the reaction mechanism, but also on the valency of the reacting ions. We construct a nonlinear differential equation describing surface charging by combining chemical Langmuir kinetics and electrostatic Poisson-Boltzmann theory. Our results reveal a clear distinction between late-time (near-equilibrium) and short-time (far-from-equilibrium) relaxation rates, the ratio of which contains information on the charge valency and ad- or desorption mechanism of the charging process. Similarly, we find that single-ion reactions can be distinguished from two-ion reactions, as the latter show an inflection point during equilibration. Interestingly, such inflection points are characteristic of autocatalytic reactions, and we conclude that the Coulombic ion-surface interaction is an autocatalytic feedback mechanism.
Collapse
Affiliation(s)
- W Q Boon
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - M Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - R van Roij
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| |
Collapse
|
6
|
Mahapatra P, Ohshima H, Gopmandal PP. Electrophoresis of Dielectric and Hydrophobic Spherical Fluid Droplets Possessing Uniform Surface Charge Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11421-11431. [PMID: 36083152 DOI: 10.1021/acs.langmuir.2c01702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present article deals with the theoretical study on electrophoresis of hydrophobic and dielectric spherical fluid droplets possessing uniform surface charge density. Unlike the ideally polarizable liquid droplet bearing constant surface ζ-potential, the tangential component of the Maxwell stress is nonzero for dielectric fluid droplets with uniform surface charge density. We consider the continuity of the tangential component of total stress (sum of the hydrodynamic and Maxwell stresses) and jump in dielectric displacement along the droplet-to-electrolyte interface. The typical situation is considered here for which the interfacial tension of the fluid droplet is sufficiently high so that the droplet retains its spherical shape during its motion. The present theory can be applied to nanoemulsions, hydrophobic oil droplets, gas bubbles, droplets of immiscible liquid suspended in aqueous medium, etc. Based on weak field and low charge assumptions and neglecting the Marangoni effect, the resultant electrokinetic equations are solved using linear perturbation analysis to derive the closed form expression for electrophoretic mobility applicable for the entire range of Debye-Hückel parameter. We further deduced an alternate approximate expression for electrophoretic mobility without involving exponential integrals. Besides, we have derived analytical results for mobility pertaining to various limiting cases. The results are further illustrated to show the impact of pertinent parameters on the overall electrophoretic mobility.
Collapse
Affiliation(s)
- Paramita Mahapatra
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur 713209, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science Noda, Chiba 278-8510, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur 713209, India
| |
Collapse
|
7
|
Perrin L, Desobry-Banon S, Gillet G, Desobry S. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022; 11:2194. [PMID: 35892779 PMCID: PMC9331899 DOI: 10.3390/foods11152194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure homogenization, microfluidization, as well as membrane emulsification. These processes often need emulsifiers' presence to help formulate emulsions and to stabilize them over time. However, certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of their negative environment and health impacts. Thus, to avoid them, promising processes using high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions. High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now, emulsifier-free emulsions' stability is not fully understood. Some authors suppose that stability is obtained through hydroxide ions' organization at the hydrophobic/water interfaces, which have been mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks to hydronium ions. These theories are discussed in this review.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
- SAS GENIALIS, Route d’Achères, 18250 Henrichemont, France;
| | - Sylvie Desobry-Banon
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| | | | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| |
Collapse
|
8
|
Uematsu Y, Ohshima H. Electrophoretic Mobility of a Water-in-Oil Droplet Separately Affected by the Net Charge and Surface Charge Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4213-4221. [PMID: 35352953 DOI: 10.1021/acs.langmuir.1c03145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water-in-oil emulsions and droplets exhibit physicochemical properties completely different from those of oil-in-water emulsions and droplets. Thus, directly applying a standard theoretical model to water-in-oil systems cannot describe these anomalous properties. Here, the electrophoretic mobility of a water-in-oil droplet is analytically investigated using Debye-Hückel linearization and neglecting the Marangoni effect. The resulting electrophoretic mobility is shown to be separately dependent on the net charge of the droplet and the surface charge density at the droplet interface. Furthermore, when the net charge is negligible, the electrophoretic mobility is proportional to the surface charge density with a negative coefficient. This indicates that the internal electric double layer inversely contributes to the electrophoresis. This theory is applied to experimental data of water-in-oil emulsions and droplets in the literature, and qualitative and quantitative verification of the theory is discussed.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| |
Collapse
|
9
|
Telles IM, Levin Y, Dos Santos AP. Reversal of Electroosmotic Flow in Charged Nanopores with Multivalent Electrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3817-3823. [PMID: 35291760 DOI: 10.1021/acs.langmuir.1c03475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study the reversal of electroosmotic flow in charged cylindrical nanopores containing multivalent electrolyte. Dissipative particle dynamics is used to simulate the hydrodynamics of the electroosmotic flow. The electrostatic interactions are treated using 3D Ewald summation, corrected for a pseudo-one-dimensional geometry of the pore. We observe that, for sufficiently large surface charge density, condensation of multivalent counterions leads to the reversal of the pore's surface charge. This results in the reversal of electroosmotic flow. Our simulations show that the Smoluchowski equation is able to quantitatively account for the electroosmotic flow through the nanopore, if the shear plane is shifted from the position of the Stern contact surface.
Collapse
Affiliation(s)
- Igor M Telles
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, Rio Grande do Sul CEP 91501-970, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, Rio Grande do Sul CEP 91501-970, Brazil
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, Rio Grande do Sul CEP 91501-970, Brazil
| |
Collapse
|
10
|
Koshkina O, Raju LT, Kaltbeitzel A, Riedinger A, Lohse D, Zhang X, Landfester K. Surface Properties of Colloidal Particles Affect Colloidal Self-Assembly in Evaporating Self-Lubricating Ternary Droplets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2275-2290. [PMID: 34931807 PMCID: PMC8763378 DOI: 10.1021/acsami.1c19241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/05/2023]
Abstract
In this work, we unravel the role of surface properties of colloidal particles on the formation of supraparticles (clusters of colloidal particles) in a colloidal Ouzo droplet. Self-lubricating colloidal Ouzo droplets are an efficient and simple approach to form supraparticles, overcoming the challenge of the coffee stain effect in situ. Supraparticles are an efficient route to high-performance materials in various fields, from catalysis to carriers for therapeutics. Yet, the role of the surface of colloidal particles in the formation of supraparticles using Ouzo droplets remains unknown. Therefore, we used silica particles as a model system and compared sterically stabilized versus electrostatically stabilized silica particles─positively and negatively charged. Additionally, we studied the effect of hydration. Hydrated negatively charged silica particles and sterically stabilized silica particles form supraparticles. Conversely, dehydrated negatively charged silica particles and positively charged amine-coated particles form flat film-like deposits. Notably, the assembly process is different for all the four types of particles. The surface modifications alter (a) the contact line motion of the Ouzo droplet and (b) the particle-oil and particle-substrate interactions. These alterations modify the particle accumulation at the various interfaces, which ultimately determines the shape of the final deposit. Thus, by modulating the surface properties of the colloidal particles, we can tune the shape of the final deposit, from a spheroidal supraparticle to a flat deposit. In the future, this approach can be used to tailor the supraparticles for applications such as optics and catalysis, where the shape affects the functionality.
Collapse
Affiliation(s)
- Olga Koshkina
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lijun Thayyil Raju
- Physics
of Fluids Group, Max Planck Center for Complex Fluid Dynamics, MESA+
Institute and J. M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Anke Kaltbeitzel
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Andreas Riedinger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Detlef Lohse
- Physics
of Fluids Group, Max Planck Center for Complex Fluid Dynamics, MESA+
Institute and J. M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
- Max
Planck Institute for Dynamics and Self-Organisation, 37077 Göttingen,
Am Fassberg 17, Germany
| | - Xuehua Zhang
- Physics
of Fluids Group, Max Planck Center for Complex Fluid Dynamics, MESA+
Institute and J. M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
- Department
of Chemical and Materials Engineering, University
of Alberta, 12-380 Donadeo Innovation Centre for Engineering, Edmonton, T6G1H9 Alberta, Canada
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|