1
|
Hamada N, Matsuya Y, Zablotska LB, Little MP. Inverse dose protraction effects of low-LET radiation: Evidence and significance. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108531. [PMID: 39814314 DOI: 10.1016/j.mrrev.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g., solid cancer). In contrast, inverse dose protraction effects (IDPEs) in which dose protraction enhances radiation effects have not been well recognized, nor comprehensively reviewed. Here, we review the current knowledge on IDPEs of low linear energy transfer (LET) radiation. To the best of our knowledge, since 1952, 157 biology, epidemiology or clinical papers have reported IDPEs following external or internal low-LET irradiation with photons (X-rays, γ-rays), β-rays, electrons, protons or helium ions. IDPEs of low-LET radiation have been described for biochemical changes in cell-free macromolecules (DNA, proteins or lipids), DNA damage responses in bacteria and yeasts, DNA damage, cytogenetic changes, neoplastic transformation and cell death in mammalian cell cultures of human, rodent or bovine origin, mutagenesis in silkworms, cytogenetic changes, induction of cancer (solid tumors and leukemia) and non-cancer effects (male sterility, cataracts and diseases of the circulatory system), tumor inactivation and survival in non-human mammals (rodents, rabbits, dogs and pigs), and induction of cancer and non-cancer effects (skin changes and diseases of the circulatory system) in humans. In contrast to a growing body of phenomenological evidence for manifestations of IDPEs, there is limited knowledge on mechanistic underpinnings, but proposed mechanisms involve cell cycle-dependent resensitization and low dose hyper-radiosensitivity. These necessitate continued studies for further mechanistic developments and assessment of implications of scientific evidence for radiation protection (e.g., in terms of a dose rate effectiveness factor).
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba 270-1194, Japan.
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, Hokkaido 060-0812, Japan; Research Group for Radiation Transport Analysis, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK
| |
Collapse
|
2
|
Yamada Y, Imaoka T, Iwasaki T, Kobayashi J, Misumi M, Sakai K, Sugihara T, Suzuki K, Tauchi H, Yasuda H, Yoshinaga S, Sasatani M, Tanaka S, Doi K, Tomita M, Iizuka D, Kakinuma S, Sasaki M, Kai M. Establishment and activity of the planning and acting network for low dose radiation research in Japan (PLANET): 2016-2023. JOURNAL OF RADIATION RESEARCH 2024; 65:561-574. [PMID: 39007844 PMCID: PMC11420843 DOI: 10.1093/jrr/rrae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Indexed: 07/16/2024]
Abstract
The Planning and Acting Network for Low Dose Radiation Research in Japan (PLANET) was established in 2017 in response to the need for an all-Japan network of experts. It serves as an academic platform to propose strategies and facilitate collaboration to improve quantitative estimation of health risks from ionizing radiation at low-doses and low-dose-rates. PLANET established Working Group 1 (Dose-Rate Effects in Animal Experiments) to consolidate findings from animal experiments on dose-rate effects in carcinogenesis. Considering international trends in this field as well as the situation in Japan, PLANET updated its priority research areas for Japanese low-dose radiation research in 2023 to include (i) characterization of low-dose and low-dose-rate radiation risk, (ii) factors to be considered for individualization of radiation risk, (iii) biological mechanisms of low-dose and low-dose-rate radiation effects and (iv) integration of epidemiology and biology. In this context, PLANET established Working Group 2 (Dose and Dose-Rate Mapping for Radiation Risk Studies) to identify the range of doses and dose rates at which observable effects on different endpoints have been reported; Working Group 3 (Species- and Organ-Specific Dose-Rate Effects) to consider the relevance of stem cell dynamics in radiation carcinogenesis of different species and organs; and Working Group 4 (Research Mapping for Radiation-Related Carcinogenesis) to sort out relevant studies, including those on non-mutagenic effects, and to identify priority research areas. These PLANET activities will be used to improve the risk assessment and to contribute to the revision of the next main recommendations of the International Commission on Radiological Protection.
Collapse
Affiliation(s)
- Yutaka Yamada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyasu Iwasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Junya Kobayashi
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Kazuo Sakai
- Tokyo Healthcare University, 2-5-1 Higashiaoka, Meguro-ku, Tokyo 152-8558, Japan
| | - Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shinji Yoshinaga
- Department of Environmetrics and Biometrics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanori Tomita
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Michiya Sasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| |
Collapse
|
3
|
Laurent O, Samson E, Caër-Lorho S, Fournier L, Laurier D, Leuraud K. Updated Mortality Analysis of SELTINE, the French Cohort of Nuclear Workers, 1968-2014. Cancers (Basel) 2022; 15:79. [PMID: 36612076 PMCID: PMC9817793 DOI: 10.3390/cancers15010079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Cohorts of nuclear workers are particularly relevant to study the health effects of protracted exposures to low doses at low dose-rates of ionizing radiation (IR). In France, a cohort of nuclear workers badge-monitored for external IR exposure has been followed-up for several decades. Its size and follow-up period have recently been extended. The present paper focuses on mortality from both cancer and non-cancer diseases in this cohort. The SELTINE cohort of nuclear workers employed by CEA, Orano, and EDF companies was followed-up for mortality from 1968 to 2014. Mortality in the cohort was compared to that in the French general population. Poisson regression methods were used to estimate excess relative rates of mortality per unit of cumulative dose of IR, adjusted for calendar year, age, company, duration of employment, and socioeconomic status. The cohort included 80,348 workers. At the end of the follow-up, the mean attained age was 63 years, and 15,695 deaths were observed. A strong healthy worker effect was observed overall. A significant excess of pleural cancer mortality was observed but not associated with IR dose. Death from solid cancers was positively but non-significantly associated with radiation. Death from leukaemia (excluding chronic lymphocytic leukaemia), dementia, and Alzheimer's disease were positively and significantly associated with IR dose. Estimated dose-risk relationships were consistent with those from other nuclear worker studies for all solid cancers and leukaemia but remained associated with large uncertainty. The association between IR dose and dementia mortality risk should be interpreted with caution and requires further investigation by other studies.
Collapse
Affiliation(s)
- Olivier Laurent
- Ionizing Radiation Epidemiology Laboratory (LEPID), Institute for Radiobiological Protection and Nuclear Safety (IRSN), 92262 Fontenay-aux-Roses, France
| | | | | | | | | | | |
Collapse
|