1
|
Valle ABCDS, da Silva FFA, Carneiro MÂP, Espuche B, Tavares GD, Bernardes ES, Moya SE, Pittella F. In Vivo HOXB7 Gene Silencing and Cotreatment with Tamoxifen for Luminal A Breast Cancer Therapy. Pharmaceuticals (Basel) 2024; 17:1325. [PMID: 39458966 PMCID: PMC11509954 DOI: 10.3390/ph17101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Acquired resistance and adverse effects are some of the challenges faced by thousands of Luminal A breast cancer patients under tamoxifen (TMX) treatment. Some authors associate the overexpression of HOXB7 with TMX resistance in this molecular subtype, and the knockdown of this gene could be an effective strategy to regain TMX sensitivity. Therefore, we used calcium phosphate hybrid nanoparticles (HNP) for the delivery of short interfering RNA molecule (siRNA) complementary to the HOXB7 gene and evaluated the RNA interference (RNAi) effects associated with TMX treatment in breast cancer in vivo. METHODS HNP were prepared by the self-assembly of a methoxy-poly (ethylene glycol)-block-poly (L-glutamic acid) copolymer (PEG-pGlu) and the coprecipitation of CaPO4 to incorporate siRNA. The in vitro cell viability and migration were evaluated prior to in vivo experiments. Further, animals bearing early-stage and advanced Luminal A breast cancer were treated with HNP-siHOXB7, HNP-siHOXB7 + TMX, and TMX. Antitumoral activity and gene expression were evaluated following histopathological, hematological, and biochemical analysis. RESULTS The HNP were efficient in delivering the siRNA in vitro and in vivo, whilst HOXB7 silencing associated with TMX administration promoted controlled tumor growth, as well as a higher survival rate and reduction in immuno- and hepatotoxicity. CONCLUSIONS Therefore, our findings suggest that HOXB7 can be an interesting molecular target for Luminal A breast cancer, especially associated with hormone therapy, aiming for adverse effect mitigation and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Ana Beatriz Caribé dos Santos Valle
- Laboratório de Desenvolvimento de Sistemas Nanoestruturados, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; (A.B.C.d.S.V.); (G.D.T.)
| | - Fábio Fernando Alves da Silva
- Instituto de Pesquisas Energéticas e Nucleares, Centro de Radiofarmácia (IPEN/CECRF), Comissão Nacional de Energia Nuclear, São Paulo 05508-000, Brazil; (F.F.A.d.S.); (M.Â.P.C.); (E.S.B.)
| | - Maria Ângela Pepe Carneiro
- Instituto de Pesquisas Energéticas e Nucleares, Centro de Radiofarmácia (IPEN/CECRF), Comissão Nacional de Energia Nuclear, São Paulo 05508-000, Brazil; (F.F.A.d.S.); (M.Â.P.C.); (E.S.B.)
| | - Bruno Espuche
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 194, 20014 Donostia-San Sebastián, Spain; (B.E.); (S.E.M.)
| | - Guilherme Diniz Tavares
- Laboratório de Desenvolvimento de Sistemas Nanoestruturados, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; (A.B.C.d.S.V.); (G.D.T.)
| | - Emerson Soares Bernardes
- Instituto de Pesquisas Energéticas e Nucleares, Centro de Radiofarmácia (IPEN/CECRF), Comissão Nacional de Energia Nuclear, São Paulo 05508-000, Brazil; (F.F.A.d.S.); (M.Â.P.C.); (E.S.B.)
| | - Sergio Enrique Moya
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 194, 20014 Donostia-San Sebastián, Spain; (B.E.); (S.E.M.)
| | - Frederico Pittella
- Laboratório de Desenvolvimento de Sistemas Nanoestruturados, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, Juiz de Fora 36036-900, Brazil; (A.B.C.d.S.V.); (G.D.T.)
| |
Collapse
|
2
|
Samia S, Sandeep Chary P, Khan O, Kumar Mehra N. Recent trends and advances in novel formulations as an armament in Bcl-2/Bax targeted breast cancer. Int J Pharm 2024; 653:123889. [PMID: 38346605 DOI: 10.1016/j.ijpharm.2024.123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) remains a significant health burden worldwide, necessitating the development of innovative therapeutic strategies. The B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2 and Bax, play a crucial role in regulating apoptosis and thus are promising targets for BC therapy. We focus on the recent advancements in novel formulations that specifically target Bcl-2/Bax pathway to combat BC. It provides an overview on biological functions of Bcl-2/Bax in apoptosis regulation, emphasizing their significance in pathogenesis and progression of the disease while covering the numerous therapeutic approaches aimed at modulating the Bcl-2/Bax pathway, including small-molecule inhibitors, peptides, gene-based therapies and other repurposed drugs harboured onto cutting-edge technologies and nanocarrier systems employed to enhance the targeted delivery of Bcl-2/Bax inhibitors tumor cells. These advanced formulations aim to improve therapeutic efficacy, minimize off-target effects, and overcome drug resistance, offering promising prospects in its treatment. In conclusion, it illuminates the diverse and evolving landscape of novel formulations as an essential armament in targeting these proteins while bridging and unravelling the obscurity of Bcl-2/Bax pathway-targeted drug delivery systems which are presently in their nascent stages of exploration for BC therapy which can benefit researchers, clinicians, and pharmaceutical scientists.
Collapse
Affiliation(s)
- Shaikh Samia
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
4
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
5
|
A Dick T, Uludağ H. Mineralized polyplexes for gene delivery: Improvement of transfection efficiency as a consequence of calcium incubation and not mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112419. [PMID: 34579928 DOI: 10.1016/j.msec.2021.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging field in which nucleic acids are used to control protein expression. The necessity of delivering nucleic acids to specific cell types and intracellular sites demands the use of highly specialized gene carriers. As a carrier modification technique, mineralization has been successfully used to modify viral and non-viral carriers, providing new properties that ultimately aim to increase the transfection efficiency. However, for the specific case of polyplexes used in gene therapy, recent literature shows that interaction with calcium, a fundamental step of mineralization, might be effective to increase transfection efficiency, leaving an ambiguity about of the role of mineralization for this type of gene carriers. To answer this question and to reveal the properties responsible for increasing transfection efficiency, we mineralized poly(aspartic acid) coated polyplexes at various CaCl2 and Na3PO4 concentrations, and evaluated the resultant carriers for physicochemical and morphological characteristics, as well as transfection and delivery efficiency with MC3T3-E1 mouse osteoblastic cells. We found that both mineralization and calcium incubation positively affected the transfection efficiency and uptake of polyplexes in MC3T3-E1 cells. However, this effect originated from the properties achieved by polyplexes after the calcium incubation step that are maintained after mineralization, including particle size increase, improved pDNA binding, and adjustment of zeta potential. Considering that mineralization can be a longer process than calcium incubation, we find that calcium incubation might be sufficient and preferred if improved transfection efficiency in vitro is the only effect desired.
Collapse
Affiliation(s)
- Teo A Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Souza GRR, Dalmina M, Restrepo JAS, de Mello Junior LJ, Silva AH, Gualberto A, Gameiro J, Dittz D, Pasa AA, Pittella F, Creczynski-Pasa TB. Short interfering RNA delivered by a hybrid nanoparticle targeting VEGF: Biodistribution and anti-tumor effect. Biochim Biophys Acta Gen Subj 2021; 1865:129938. [PMID: 34062235 DOI: 10.1016/j.bbagen.2021.129938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The use of RNA interference (iRNA) therapy has proved to be an interesting target therapy for the cancer treatment; however, siRNAs are unstable and quickly eliminated from the bloodstream. To face these barriers, the use of biocompatible and efficient nanocarriers emerges as an alternative to improve the success application of iRNA to the cancer, including breast cancer. RESULTS A hybrid nanocarrier composed of calcium phosphate as the inorganic phase and a block copolymer containing polyanions as organic phase, named HNPs, was developed to deliver VEGF siRNA into metastatic breast cancer in mice. The particles presented a rounded shape by TEM images with average size measured by DLS suitable and biocompatible for biomedical applications. The XPS and EDS spectra confirmed the hybrid composition of the nanoparticles. Moreover, after intravenous administration, the particles accumulated mainly in the tumor site and kidneys, which demonstrates the tumor targeting accumulation through the Enhanced Permeability and Retention Effect (EPR). A significant decrease in size of the tumors treated with the nanoparticles containing siVEGF (HNPs-siVEGF) was observed and the reduction was related to enhanced tumor accumulation of siRNA as well as in vivo VEGF silencing at gene and protein levels. CONCLUSION The hybrid system prepared was successful in promoting the RNAi effect in vivo with very low toxicity. GENERAL SIGNIFICANCE This study shows the valuable development of a hybrid nanoparticle carrying VEGF siRNA, as well as their tumor targeting, accumulation and reduction in mice triple-negative breast cancer.
Collapse
Affiliation(s)
| | - Milene Dalmina
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, SC, Brazil
| | | | | | - Adny Henrique Silva
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Ana Gualberto
- Graduate Program in Biological Sciences, Federal University of Juiz de Fora, MG, Brazil
| | - Jacy Gameiro
- Graduate Program in Biological Sciences, Federal University of Juiz de Fora, MG, Brazil
| | - Dalton Dittz
- Department of Pharmacology, Federal University of Minas Gerais, MG, Brazil
| | - André Avelino Pasa
- Graduate Program in Materials Science and Engineering, Department of Physics, Federal University of Santa Catarina, SC, Brazil
| | - Frederico Pittella
- Department of Pharmaceutical Sciences, Graduate Program in Biological Sciences, Federal University of Juiz de Fora, MG, Brazil
| | | |
Collapse
|
7
|
Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements. Pharmaceutics 2020; 12:pharmaceutics12100929. [PMID: 33003468 PMCID: PMC7599839 DOI: 10.3390/pharmaceutics12100929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive types of breast cancer. Owing to the absenteeism of hormonal receptors expressed at the cancerous breast cells, hormonal therapies and other medications targeting human epidermal growth factor receptor 2 (HER2) are ineffective in TNBC patients, making traditional chemotherapeutic agents the only current appropriate regimen. Patients' predisposition to relapse and metastasis, chemotherapeutics' cytotoxicity and resistance and poor prognosis of TNBC necessitates researchers to investigate different novel-targeted therapeutics. The role of small interfering RNA (siRNA) in silencing the genes/proteins that are aberrantly overexpressed in carcinoma cells showed great potential as part of TNBC therapeutic regimen. However, targeting specificity, siRNA stability, and delivery efficiency cause challenges in the progression of this application clinically. Nanotechnology was highlighted as a promising approach for encapsulating and transporting siRNA with high efficiency-low toxicity profile. Advances in preclinical and clinical studies utilizing engineered siRNA-loaded nanotherapeutics for treatment of TNBC were discussed. Specific and selective targeting of diverse signaling molecules/pathways at the level of tumor proliferation and cell cycle, tumor invasion and metastasis, angiogenesis and tumor microenvironment, and chemotherapeutics' resistance demonstrated greater activity via integration of siRNA-complexed nanoparticles.
Collapse
|
8
|
Silver Nanoparticles Surface-Modified with Carbosilane Dendrons as Carriers of Anticancer siRNA. Int J Mol Sci 2020; 21:ijms21134647. [PMID: 32629868 PMCID: PMC7370058 DOI: 10.3390/ijms21134647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is a promising approach in cancer treatment; however, current methods have a number of limitations mainly due to the difficulty in delivering therapeutic nucleic acids to their sites of action. The application of non-viral carriers based on nanomaterials aims at protecting genetic material from degradation and enabling its effective intracellular transport. We proposed the use of silver nanoparticles (AgNPs) surface-modified with carbosilane dendrons as carriers of anticancer siRNA (siBcl-xl). Using gel electrophoresis, zeta potential and hydrodynamic diameter measurements, as well as transmission electron microscopy, we characterized AgNP:siRNA complexes and demonstrated the stability of nucleic acid in complexes in the presence of RNase. Hemolytic properties of free silver nanoparticles and complexes, their effect on lymphocyte proliferation and cytotoxic activity on HeLa cells were also examined. Confocal microscopy proved the effective cellular uptake of complexes, indicating the possible use of this type of silver nanoparticles as carriers of genetic material in gene therapy.
Collapse
|
9
|
Cristofolini T, Dalmina M, Sierra JA, Silva AH, Pasa AA, Pittella F, Creczynski-Pasa TB. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110555. [PMID: 32228895 DOI: 10.1016/j.msec.2019.110555] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022]
Abstract
Breast cancer is a major cause of death among women worldwide. Resistance to conventional therapies has been observed in HER2-positive breast cancer patients, indicating the need for more effective treatments. Small interfering RNA (siRNA) therapy is an attractive strategy against HER2-positive tumors, but its success depends largely on the efficient delivery of agents to target tissues. In this study, we prepared a magnetic hybrid nanostructure composed of iron oxide nanoparticles coated with caffeic acid and stabilized by layers of calcium phosphate and PEG-polyanion block copolymer for incorporation of siRNA. Transmission electron microscopy images showed monodisperse, neutrally charged compact spheres sized <100 nm. Dynamic light scattering and nanoparticle tracking analysis revealed that the nanostructure had an average hydrodynamic diameter of 130 nm. Nanoparticle suspensions remained stable over 42 days of storage at 4 and 25 °C. Unloaded caffeic acid-magnetic calcium phosphate (Caf-MCaP) nanoparticles were not cytotoxic, and loaded nanoparticles were successfully taken up by the HER2-positive breast cancer cell line HCC1954, even more so under magnetic guidance. Nanoparticles escaped endosomal degradation and delivered siRNA into the cytoplasm, inducing HER2 gene silencing.
Collapse
Affiliation(s)
- Tatiane Cristofolini
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Milene Dalmina
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jelver A Sierra
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil; PGMAT, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Adny H Silva
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - André A Pasa
- LFFS, Department of Physics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Frederico Pittella
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Tânia B Creczynski-Pasa
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
10
|
Biocompatible co-loading vehicles for delivering both nanoplatin cores and siRNA to treat hepatocellular carcinoma. Int J Pharm 2019; 572:118769. [PMID: 31669557 DOI: 10.1016/j.ijpharm.2019.118769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 12/22/2022]
|
11
|
Mahdizadeh R, Homayouni‐Tabrizi M, Neamati A, Seyedi SMR, Tavakkol Afshari HS. Green synthesized‐zinc oxide nanoparticles, the strong apoptosis inducer as an exclusive antitumor agent in murine breast tumor model and human breast cancer cell lines (MCF7). J Cell Biochem 2019; 120:17984-17993. [DOI: 10.1002/jcb.29065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Roya Mahdizadeh
- Department of Biology, Mashhad Branch Islamic Azad University Mashhad Iran
| | | | - Ali Neamati
- Department of Biology, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Seyed Mohammad Reza Seyedi
- Department of Biology, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | | |
Collapse
|
12
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Oncogenic Signaling in Tumorigenesis and Applications of siRNA Nanotherapeutics in Breast Cancer. Cancers (Basel) 2019; 11:cancers11050632. [PMID: 31064156 PMCID: PMC6562835 DOI: 10.3390/cancers11050632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Overexpression of oncogenes and cross-talks of the oncoproteins-regulated signaling cascades with other intracellular pathways in breast cancer could lead to massive abnormal signaling with the consequence of tumorigenesis. The ability to identify the genes having vital roles in cancer development would give a promising therapeutics strategy in combating the disease. Genetic manipulations through siRNAs targeting the complementary sequence of the oncogenic mRNA in breast cancer is one of the promising approaches that can be harnessed to develop more efficient treatments for breast cancer. In this review, we highlighted the effects of major signaling pathways stimulated by oncogene products on breast tumorigenesis and discussed the potential therapeutic strategies for targeted delivery of siRNAs with nanoparticles in suppressing the stimulated signaling pathways.
Collapse
|
14
|
de Mello LJ, Souza GR, Silva AH, Gualberto AC, Gameiro J, Júnior DD, de Miranda NB, Pittella F, Creczynski-Pasa TB. In vivo antiapoptotic gene silencing: hybrid nanoparticles as delivery system. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ifacol.2018.11.666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Ayatollahi S, Salmasi Z, Hashemi M, Askarian S, Oskuee RK, Abnous K, Ramezani M. Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. Int J Biochem Cell Biol 2017; 92:210-217. [PMID: 29031805 DOI: 10.1016/j.biocel.2017.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022]
Abstract
RNAi-based gene therapy has been recently considered as a promising approach against cancer. Targeted delivery of drug, gene or therapeutic RNAi-based systems to tumor cells is one of the important issues in order to reduce side effects on normal cells. Several strategies have been developed to improve the safety and selectivity of cancer treatments including antibodies, peptides and recently aptamers with various attractive characteristics including higher target specificity, affinity and reduced toxicity. Here we described a novel targeted delivery platform comprising modified PAMAM with 10-bromodecanoic acid (10C) and 10C-PEG for improvement of transfection efficiency, AS1411 aptamer for targeting nucleolin ligand on target cancer cells and shRNA plasmid for specific knockdown of Bcl-xL protein. Modified vector could significantly improve the transfection efficiency even after covalent or non-covalent aptamer binding compared to the non-targeted vector in A549 cells. The results of gene silencing and apoptosis assay indicated that our targeted shRNA delivery system could efficiently down-regulate the Bcl-xL expression up to 25% and induce 14% late apoptosis in target cancer cells with strong cell selectivity. This study proposed a novel targeted non-viral system for shRNA-mediated gene-silencing in cancer cells.
Collapse
Affiliation(s)
- Sara Ayatollahi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Askarian
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted drug delivery research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|