1
|
Ahmad W, Ahmad N, Wang K, Aftab S, Hou Y, Wan Z, Yan B, Pan Z, Gao H, Peung C, Junke Y, Liang C, Lu Z, Yan W, Ling M. Electron-Sponge Nature of Polyoxometalates for Next-Generation Electrocatalytic Water Splitting and Nonvolatile Neuromorphic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304120. [PMID: 38030565 PMCID: PMC10837383 DOI: 10.1002/advs.202304120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Designing next-generation molecular devices typically necessitates plentiful oxygen-bearing sites to facilitate multiple-electron transfers. However, the theoretical limits of existing materials for energy conversion and information storage devices make it inevitable to hunt for new competitors. Polyoxometalates (POMs), a unique class of metal-oxide clusters, have been investigated exponentially due to their structural diversity and tunable redox properties. POMs behave as electron-sponges owing to their intrinsic ability of reversible uptake-release of multiple electrons. In this review, numerous POM-frameworks together with desired features of a contender material and inherited properties of POMs are systematically discussed to demonstrate how and why the electron-sponge-like nature of POMs is beneficial to design next-generation water oxidation/reduction electrocatalysts, and neuromorphic nonvolatile resistance-switching random-access memory devices. The aim is to converge the attention of scientists who are working separately on electrocatalysts and memory devices, on a point that, although the application types are different, they all hunt for a material that could exhibit electron-sponge-like feature to realize boosted performances and thus, encouraging the scientists of two completely different fields to explore POMs as imperious contenders to design next-generation nanodevices. Finally, challenges and promising prospects in this research field are also highlighted.
Collapse
Affiliation(s)
- Waqar Ahmad
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Nisar Ahmad
- School of MicroelectronicsUniversity of Science and Technology of ChinaHefei230026China
| | - Kun Wang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Sumaira Aftab
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Yunpeng Hou
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengwei Wan
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Bei‐Bei Yan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Zhao Pan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Huai‐Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Chen Peung
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Yang Junke
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Chengdu Liang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhihui Lu
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Wenjun Yan
- School of AutomationHangzhou Dianzi UniversityHangzhou310018China
| | - Min Ling
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
2
|
Salhi J, Calupitan JP, Mattera M, Montero D, Miche A, Maruchenko R, Proust A, Izzet G, Kreher D, Arfaoui I, Volatron F. Ready-to-be-addressed oxo-clusters: individualized, periodically organized and separated from the substrate. NANOSCALE 2023; 15:13233-13238. [PMID: 37540202 DOI: 10.1039/d3nr02649c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Clusters and oxo-clusters are drawing attention for their amazing physical properties, especially at the scale of the single molecule. However, chemical methods to organize them individually on a surface are still lacking. In this study we show that it is possible to periodically organize individual polyoxometalates thanks to their ordering by a new supramolecular assembly.
Collapse
Affiliation(s)
- Juba Salhi
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - Jan Patrick Calupitan
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - Michele Mattera
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - David Montero
- Fédération de chimie et matériaux de Paris-centre (FCMat), Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Antoine Miche
- Laboratoire de réactivité de surface (LRS), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Régina Maruchenko
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - Anna Proust
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - Guillaume Izzet
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - David Kreher
- Institut Lavoisier de Versailles (ILV), CNRS, Université Paris-Saclay, 45 avenue des Etats-Unis, F-78035 Versailles, France
| | - Imad Arfaoui
- De la molécule aux nano-objets: réactivité, interactions et spectroscopies (MONARIS), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Florence Volatron
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
3
|
Huez C, Guérin D, Lenfant S, Volatron F, Calame M, Perrin ML, Proust A, Vuillaume D. Redox-controlled conductance of polyoxometalate molecular junctions. NANOSCALE 2022; 14:13790-13800. [PMID: 36102689 DOI: 10.1039/d2nr03457c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate the reversible in situ photoreduction of molecular junctions of a phosphomolybdate [PMo12O40]3- monolayer self-assembled on flat gold electrodes, connected by the tip of a conductive atomic force microscope. The conductance of the one electron reduced [PMo12O40]4- molecular junction is increased by ∼10, and this open-shell state is stable in the junction in air at room temperature. The analysis of a large current-voltage dataset by unsupervised machine learning and clustering algorithms reveals that the electron transport in the pristine phosphomolybdate junctions leads to symmetric current-voltage curves, controlled by the lowest unoccupied molecular orbital (LUMO) at 0.6-0.7 eV above the Fermi energy with ∼25% of the junctions having a better electronic coupling to the electrodes than the main part of the dataset. This analysis also shows that a small fraction (∼18% of the dataset) of the molecules is already reduced. The UV light in situ photoreduced phosphomolybdate junctions systematically feature slightly asymmetric current-voltage behaviors, which is ascribed to the electron transport mediated by the single occupied molecular orbital (SOMO) nearly at resonance with the Fermi energy of the electrodes and by a closely located single unoccupied molecular orbital (SUMO) at ∼0.3 eV above the SOMO with a weak electronic coupling to the electrodes (∼50% of the dataset) or at ∼0.4 eV but with a better electrode coupling (∼50% of the dataset). These results shed light on the electronic properties of reversible switchable redox polyoxometalates, a key point for potential applications in nanoelectronic devices.
Collapse
Affiliation(s)
- Cécile Huez
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - David Guérin
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Stéphane Lenfant
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Florence Volatron
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Michel Calame
- EMPA, Transport at the Nanoscale Laboratory, 8600 Dübendorf, Switzerland
- Dept. of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Mickael L Perrin
- EMPA, Transport at the Nanoscale Laboratory, 8600 Dübendorf, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Anna Proust
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Dominique Vuillaume
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| |
Collapse
|
4
|
Gillet A, Cher S, Tassé M, Blon T, Alves S, Izzet G, Chaudret B, Proust A, Demont P, Volatron F, Tricard S. Polarizability is a key parameter for molecular electronics. NANOSCALE HORIZONS 2021; 6:271-276. [PMID: 33507203 DOI: 10.1039/d0nh00583e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identifying descriptors that govern charge transport in molecular electronics is of prime importance for the elaboration of devices. The effects of molecule characteristics, such as size, bulkiness or charge, have been widely reported. Herein, we show that the molecule polarizability can be a crucial parameter to consider. To this end, platinum nanoparticle self-assemblies (PtNP SAs) are synthesized in solution, including a series of polyoxometalates (POMs). The charge of the POM unit can be modified according to the nature of the central heteroatom while keeping its size constant. POM hybrids that display remote terminal thiol functions strongly anchor the PtNP surface to form robust SAs. IV curves, recorded by conductive AFM, show a decrease in Coulomb blockade as the dielectric constant of the POMs increases. In this system, charge transport across molecular junctions can be interpreted as variations in polarizability, which is directly related to the dielectric constant.
Collapse
Affiliation(s)
- Angélique Gillet
- Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu N, Guo N, Sun L, Liu S, Wang G, Zhao Y. Controlled Synthesis and Properties of 3d-4f Metals Co-doped Polyoxometalates-Based Materials. NANOSCALE RESEARCH LETTERS 2020; 15:205. [PMID: 33146756 PMCID: PMC7642100 DOI: 10.1186/s11671-020-03431-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
It is challenging to explore and prepare polyoxometalates-based nanomaterials (PNMs) with controllable morphologies and diversiform components. Herein, 3d-4f metals are introduced into isopolyoxometalates and Anderson-type polyoxometalates, CeCdW12 nanoflower and EuCrMo6 microflaky have been fabricated respectively. A series of control experiments are carried out to identify the impact factors on the rare morphologies in PNMs. Furthermore, upon excitation at 396 nm, the emission spectrum of EuCrMo6 displays five prominent f - f emitting peaks at 674, 685, 690, 707, and 734 nm that are assigned to Eu3+ 5D0 → 7FJ (J = 0, 1, 2, 3, 4) transitions. Meanwhile, the VSM results show that the Cr+3 ions in EuCrMo6 display anti-ferromagnetic interactions when the temperature is lower than - 17.54 K. After rising temperature, this material exhibits paramagnetic property. This work opens up strategies toward the brand new morphologies and components of PNMs, endowing this kind of material with new functions.
Collapse
Affiliation(s)
- Ning Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, China
| | - Ningning Guo
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, China
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, China
| | - Shixian Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, China
| | - Guan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, China.
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
6
|
Tachikawa H, Iura R, Kawabata H. Water-accelerated π-Stacking Reaction in Benzene Cluster Cation. Sci Rep 2019; 9:2377. [PMID: 30787381 PMCID: PMC6382828 DOI: 10.1038/s41598-019-39319-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
Single molecule electron devices (SMEDs) have been widely studied through both experiments and theoretical calculations because they exhibit certain specific properties that general macromolecules do not possess. In actual SMED systems, a residual water molecule strongly affects the electronic properties of the SMED, even if only one water molecule is present. However, information about the effect of H2O molecules on the electronic properties of SMEDs is quite limited. In the present study, the effect of H2O on the ON-OFF switching property of benzene-based molecular devices was investigated by means of a direct ab initio molecular dynamics (AIMD) method. T- and H-shaped benzene dimers and trimers were examined as molecular devices. The present calculations showed that a H2O molecule accelerates the π-stacking formation in benzene molecular electronic systems. The times of stacking formation in a benzene dimer cation (n = 2) were calculated to be 460 fs (H2O) and 947 fs (no-H2O), while those in a trimer cation (n = 3) were 551 fs (H2O) and 1019 fs (no-H2O) as an average of the reaction time. This tendency was not dependent on the levels of theory used. Thus, H2O produced positive effects in benzene-based molecular electronics. The mechanism of π-stacking was discussed based on the theoretical results.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Ryoshu Iura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Hiroshi Kawabata
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| |
Collapse
|