1
|
Step-By-Step Development of Vertically Aligned Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition. COATINGS 2022. [DOI: 10.3390/coatings12070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, the growth process of self-sustained vertically aligned carbon nanotubes (VA-CNTs) is investigated in full: from bare Si wafers to fully grown VA-CNTs on 4″ wafers. Each developmental step, from supporting and catalyst layers’ depositions to CNT growth, is analyzed through X-ray diffraction, X-ray reflectivity, and scanning electron microscopy, respectively. The crystalline structure of the titanium nitride supporting layer is investigated through grazing incidence X-ray diffraction, while X-ray reflectivity provides information regarding the density, thickness, and roughness of the titanium nitride layer via extended Fourier analysis. Further, the nickel layers’ and CNTs’ morphologies are investigated by scanning electron microscopy.
Collapse
|
2
|
Anand S, Pauline S. Effective lightweight, flexible and ultrathin PVDF/rGO/Ba 2Co 2Fe 12O 22composite films for electromagnetic interference shielding applications. NANOTECHNOLOGY 2021; 32:475707. [PMID: 33691294 DOI: 10.1088/1361-6528/abed75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, we developed a simple and cost-effective solvent film casting method to fabricate ultrathin, flexible and lightweight polyvinylidenefluoride (PVDF)-based composites that provide high electromagnetic interference (EMI) shielding performance. Y-type barium hexaferrite with general formula Ba2Co2Fe12O22was first synthesized by the sol-gel autocombustion method and then reduced graphene oxide (rGO) was prepared by modified Hummer's method. The crystal structure, morphology, elemental surface analysis and magnetic properties of the samples were systematically investigated using x-ray diffraction spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and vibrating sample magnetometry. Then, the complex permittivity, complex permeability and EMI shielding properties of the flexible PVDF/rGO/Ba2Co2Fe12O22composite films with two different amounts of Ba2Co2Fe12O22NP content and a fixed amount of rGO content were investigated using a vector network analyzer. The structural characterizations of the resultant composite films showed the formation of an electroactiveβ-phase of PVDF with addition of Ba2Co2Fe12O22nanoparticles and rGO content. The enhancement of theβ-phase in the PVDF/rGO/Ba2Co2Fe12O22nanocomposites was explained from a physicochemical viewpoint. Furthermore, the electrically conductive and magnetic properties of PVDF composite films incorporating rGO and Ba2Co2Fe12O22NPs exhibited a high EMI shielding effectiveness of 25.63 dB, with an absorption-dominated shielding feature in the 8-12 GHz region. The enhanced absorption was attributed to the electrostatic interaction induced by theβ-phase fraction in the PVDF matrix, and subsequently from multiple reflections and magnetic loss originating from the synergetic effect of rGO and Ba2Co2Fe12O22NPs. This study introduces a low-cost and scalable method for the design of novel, lightweight, flexible and efficient EMI shielding composite films with promising prospects for application in the construction, electronics and aerospace fields.
Collapse
Affiliation(s)
- S Anand
- Department of Physics, Loyola College (Autonomous), University of Madras, Chennai-600034, India
| | - S Pauline
- Department of Physics, Loyola College (Autonomous), University of Madras, Chennai-600034, India
| |
Collapse
|
3
|
Kruželák J, Kvasničáková A, Hložeková K, Hudec I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. NANOSCALE ADVANCES 2021; 3:123-172. [PMID: 36131869 PMCID: PMC9417728 DOI: 10.1039/d0na00760a] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/07/2020] [Indexed: 05/04/2023]
Abstract
The explosive progress of electronic devices and communication systems results in the production of undesirable electromagnetic pollution, known as electromagnetic interference. The accumulation of electromagnetic radiation in space results in the malfunction of commercial and military electronic appliances, and it may have a negative impact on human health. Thus, the shielding of undesirable electromagnetic interference has become a serious concern of the modern society, and has been a very perspective field of research and development. This paper provides detailed insight into current trends in the advancement of various polymer-based materials with the effects of electromagnetic interference shielding. First, the theoretical aspects of shielding are outlined. Then, the comprehensive description of the structure, morphology and functionalization of the intrinsic conductive polymers, polymers filled with the different types of inorganic and organic fillers, as well as multifunctional polymer architectures are provided with respect to their conductive, dielectric, magnetic and shielding characteristics.
Collapse
Affiliation(s)
- Ján Kruželák
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia +421 02 5932589
| | - Andrea Kvasničáková
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia +421 02 5932589
| | - Klaudia Hložeková
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia +421 02 5932589
| | - Ivan Hudec
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia +421 02 5932589
| |
Collapse
|
4
|
Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z, Shao Q, Wang C, Liu H, Lu N, Wei R, Subramania A, Guo Z. Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. POLYM REV 2019. [DOI: 10.1080/15583724.2018.1546737] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dawei Jiang
- Department of Chemical Engineering and Technology, College of Science, Northeast Forestry University, Harbin, China
| | - Vignesh Murugadoss
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Electrochemical Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Ying Wang
- Department of Chemical Engineering and Technology, College of Science, Northeast Forestry University, Harbin, China
| | - Jing Lin
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Tao Ding
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| | - Zicheng Wang
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Department of Civil Engineering, Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Qian Shao
- Department of Applied Chemistry, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Chao Wang
- Department of Materials Science and Engineering, College of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Hu Liu
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Na Lu
- Department of Civil Engineering, Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Renbo Wei
- Department of Chemistry, Research Branch of Advanced Functional Materials, University of Electronic Science and Technology of China, Chengdu, China
| | - Angaiah Subramania
- Electrochemical Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|