1
|
He JJ, Dong JB, Liu LX, Cao QY, Gu JY, Zhang Y, Hua M, Yuan JR, Yan XH. Pure spin currents induced by asymmetric H-passivation in B 3C 2P 3 nanoribbons. Phys Chem Chem Phys 2024; 27:589-595. [PMID: 39656300 DOI: 10.1039/d4cp03033h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Inspired by the recently reported novel two-dimensional material B3C2P3, we performed one-dimensional shearing along the zigzag direction to obtain four B3C2P3 nanoribbons with various edge atom combinations. An asymmetric hydrogen passivation scheme was employed to modulate the electronic properties and successfully open the band gap, especially the 2H-1H passivation with dihydrogenation and monohydrogenation at the top and bottom edges, respectively, achieving bipolar magnetic semiconductors with edge P-atoms contributing to the main magnetism. Furthermore, three crucial spin-polarized transmission spectra yielded a significant spin-dependent Seebeck effect (SDSE), displaying superior thermoelectric conversion capabilities by generating pure spin currents. Our work shows that this asymmetric H-passivation effectively enables the enhancement of the spin caloritronic transport properties of the B3C2P3, which is of great significance for the exploitation of novel materials and their applications in spintronics.
Collapse
Affiliation(s)
- Jing-Jing He
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210027, China
| | - Jia-Bei Dong
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210027, China
| | - Ling-Xiao Liu
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210027, China
| | - Qin-Yue Cao
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210027, China
| | - Jun-Yi Gu
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210027, China
| | - Ying Zhang
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210027, China
| | - Min Hua
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210027, China
| | - Jia-Ren Yuan
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China.
| | - Xiao-Hong Yan
- College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China.
| |
Collapse
|
2
|
Zhang H, Xue XX, Guo G, Meng H, Qi X, Zhong J, Huang Z. Building up a view and understanding of the multifunctional activity of black phosphorous nanosheet modified with the metal atom. J Chem Phys 2023; 159:164702. [PMID: 37873962 DOI: 10.1063/5.0172525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Constructing metal-semiconductor interfaces by loading metal atoms onto two-dimensional material to build atomically dispersed single-atom catalysts (SACs) has emerged as a new frontier for improving atom utilization and designing multifunctional electrocatalysts. Nowadays, studies on black phosphorus nanosheets in electrocatalysis have received much attention and the successful preparation of metal nanoparticle/black phosphorus (BP) hybrid electrocatalysts indicates BP nanosheets can serve as a potential support platform for SACs. Herein, by using large-scale ab initio calculations, we explored a large composition space of SACs with transition metal atoms supported on BP monolayer (M-BP) and built a comprehensive picture of activity trend, stability, and electronic origin towards oxygen reduction and evolution reaction (ORR and OER) and hydrogen evolution reaction (HER). The results show that the catalytic activity can be widely tuned by reasonable regulation of metal atoms. Ni-, Pd-, and Pt-BP could effectively balance the binding strength of the target intermediates, thus achieving efficient bifunctional activity for OER and ORR. Favorable bifunctional catalytic performance for OER and HER can be realized on Rh-BP. Especially, Pt-BP exhibits promising trifunctional activity towards OER, ORR, and HER. Multiple-level corrections among overpotential, Gibbs free energy, orbital population, and d-band center reveal that the trend and origin of catalytic activity are intrinsically determined by the d-band center of metal sites. The thermodynamic and dynamic stability simulations demonstrate that the active metal centers are firmly anchored on BP substrate with intact M-P bonds. These findings provide a theoretical basis for the rational design of BP-based SACs toward promising multifunctional activity.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Xiong-Xiong Xue
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Gencai Guo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Haiyu Meng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Jianxin Zhong
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
3
|
Zhang M, Yang L, Wu X, Wang J. Black Phosphorus for Photonic Integrated Circuits. RESEARCH (WASHINGTON, D.C.) 2023; 6:0206. [PMID: 37593339 PMCID: PMC10430873 DOI: 10.34133/research.0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Black phosphorus gives several advantages and complementarities over other two-dimensional materials. It has drawn extensive interest owing to its relatively high carrier mobility, wide tunable bandgap, and in-plane anisotropy in recent years. This manuscript briefly reviews the structure and physical properties of black phosphorus and targets on black phosphorus for photonic integrated circuits. Some of the applications are discussed including photodetection, optical modulation, light emission, and polarization conversion. Corresponding recent progresses, associated challenges, and future potentials are covered.
Collapse
Affiliation(s)
| | | | | | - Junjia Wang
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering,
Southeast University, 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
4
|
Jafarpour M, Nüesch F, Heier J, Abdolhosseinzadeh S. Functional Ink Formulation for Printing and Coating of Graphene and Other 2D Materials: Challenges and Solutions. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mohammad Jafarpour
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
| | - Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
| |
Collapse
|
5
|
Priyadarsini A, Mallik BS. Site dependent catalytic water dissociation on an anisotropic buckled black phosphorus surface. Phys Chem Chem Phys 2022; 24:2582-2591. [PMID: 35029266 DOI: 10.1039/d1cp05249g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Black phosphorus (BP) is unique among 2D materials due to its anisotropic puckered structure. It has been used as a multifunctional catalyst for various purposes. In this study, we performed first principles molecular dynamics simulations to understand the water-splitting reaction on a bi-layer BP surface. We focused on the site-specific aqueous reactivity of the buckled surface. A difference in the axis-dependent reactivity is observed owing to edge defects and exposed sites. Thus, we believe that BP edges, which significantly affect the interfacial water or organic solvent molecules, must exhibit very different edge-dependent reactivity. Experiments suggested the increasing catalytic efficiency of undisturbed BP in the order bulk, few-layered BP, and BP quantum dots. We choose three active sites to investigate the mechanistic details of the OER: the zigzag (ZZ), armchair (AC), and bulk sites. This study will provide insight into the enhanced catalytic activity when more edges are exposed as the active surface. We hope to clarify the reactive pathway in an aqueous solution supported by bi-layer BP by exploring the two different mechanisms for forming the OOH* complex. We explore and report two mechanisms: a simple push-pull reaction for oxygen-oxygen bond formation, the nucleophilic attack by formed OH- and an attack by a water molecule. The free energy barriers procured for mechanism 1 taking place at the zigzag, armchair, and bulk sites are 7.59 ± 0.33, 9.04 ± 0.01, and 12.80 ± 0.09 kcal mol-1, respectively. For mechanism 2 the free energy barriers are 7.62 ± 0.11, 9.15 ± 0.16, and 11.63 ± 0.11 kcal mol-1 for the ZZ, AC, and bulk sites. The interlink between both the mechanisms is established concerning the reported free energy barriers for OOH* formation. The ZZ site is found to lower the activation barrier for the rate-determining step, followed by the AC and bulk.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| |
Collapse
|
6
|
Priyadarsini A, Mallik BS. Aqueous Affinity and Interfacial Dynamics of Anisotropic Buckled Black Phosphorous. J Phys Chem B 2021; 125:7527-7536. [PMID: 34213344 DOI: 10.1021/acs.jpcb.1c03344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of black phosphorous (BP) is similar to the honeycomb arrangement of graphene, but the layered BP is found to be buckled and highly anisotropic. The buckled surface structure affects interfacial molecule mobility and plays a vital role in various nanomaterial applications. The BP is also known for wettability, droplet formation, stability, and hydrophobicity in the aqueous environment. However, there is a gap concerning the structural and dynamical behavior of water molecules, which is available in abundance for other monoatomic and polyatomic two-dimensional (2D) materials. Motivated by the technological importance, we try to bridge the gap by explaining the surface anisotropy-facilitated behavior of water molecules on bilayer BP using classical and first principles molecular dynamics (MD) simulations. From our classical MD study, we find three distinct layers of water molecules. The water layer closest to the interface is L1, followed by L2 and L3/bulk perpendicular to the BP surface. Water molecules in the L1 layer experience some structural disintegration in hydrogen bond (HB) phenomena compared to the bulk. There is a loss of HB donor-acceptor count per water molecule. The average HB count decreases because of an elevated rate of HB formation and deformation; this would affect the dynamic properties in terms of HB lifetime. Therefore, we observe the reduced lifetime of HB in the layer in close contact with BP, which again complements our finding on the diffusion coefficient of water molecules in distinct layers. Water diffuses relatively faster with diffusion coefficient 3.25 × 10-9 m2 s-1 in L1, followed by L2 and L3. The BP layer shows moderate hydrophobic nature. Our results also indicate the anisotropic behavior as the diffusion along the x-direction is faster than that along the y-direction. The gap in the slope of the x and y components of mean-squared displacement (MSD) complements the pinning effect in an aqueous environment. We observe blue-shifted and red-shifted libration and O-H stretching modes from the calculated power spectra for the L1 water molecules compared to the L2 and L3 molecules from first principles MD simulations. Our analysis may help understand the physical phenomena that occur during the surface wetting of the predroplet formation process observed experimentally.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| |
Collapse
|
7
|
Liu X, Gaihre B, George MN, Li Y, Tilton M, Yaszemski MJ, Lu L. 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomater Sci 2021; 9:2768-2803. [PMID: 33620047 PMCID: PMC9009269 DOI: 10.1039/d0bm01972k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorene, also known as black phosphorus (BP), is a two-dimensional (2D) material that has gained significant attention in several areas of current research. Its unique properties such as outstanding surface activity, an adjustable bandgap width, favorable on/off current ratios, infrared-light responsiveness, good biocompatibility, and fast biodegradation differentiate this material from other two-dimensional materials. The application of BP in the biomedical field has been rapidly emerging over the past few years. This article aimed to provide a comprehensive review of the recent progress on the unique properties and extensive medical applications for BP in bone, nerve, skin, kidney, cancer, and biosensing related treatment. The details of applications of BP in these fields were summarized and discussed.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
He L, Lian P, Zhu Y, Zhao J, Mei Y. Heteroatom‐Doped
Black Phosphorus and Its Application: A Review. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lu‐dong He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus‐based Materials Kunming Yunnan 650500 China
| | - Pei‐chao Lian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus‐based Materials Kunming Yunnan 650500 China
| | - Yuan‐zhi Zhu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus‐based Materials Kunming Yunnan 650500 China
| | - Jun‐ping Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus‐based Materials Kunming Yunnan 650500 China
| | - Yi Mei
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus‐based Materials Kunming Yunnan 650500 China
| |
Collapse
|
9
|
Shi F, Huang K, Feng S. Recent Advances on Black Phosphorus Based Electrocatalysts for Water‐Splitting. ChemCatChem 2020. [DOI: 10.1002/cctc.201902288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fangbing Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Laboratory of Nano-Micro Architecture Chemistry Institution College of ChemistryJilin University Changchun 130012 P.R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Laboratory of Nano-Micro Architecture Chemistry Institution College of ChemistryJilin University Changchun 130012 P.R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Laboratory of Nano-Micro Architecture Chemistry Institution College of ChemistryJilin University Changchun 130012 P.R. China
| |
Collapse
|
10
|
Lei C, Lyu S, Si J, Yang B, Li Z, Lei L, Wen Z, Wu G, Hou Y. Nanostructured Carbon Based Heterogeneous Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ChemCatChem 2019. [DOI: 10.1002/cctc.201901707] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chaojun Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Siliu Lyu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Jincheng Si
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Gang Wu
- Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY-14260 USA
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
- Institute of Zhejiang University - Quzhou Quzhou 324000 P. R. China
- Ningbo Research Institute Zhejiang University Ningbo 315100 P. R. China
| |
Collapse
|
11
|
Zhu J, Jiang X, Yang Y, Chen Q, Xue XX, Chen K, Feng Y. Synergy of tellurium and defects in control of activity of phosphorene for oxygen evolution and reduction reactions. Phys Chem Chem Phys 2019; 21:22939-22946. [PMID: 31598612 DOI: 10.1039/c9cp04164h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing low-cost and metal-free electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is desirable for renewable energy technologies. Recent experiments show that tellurium (Te) atoms can be effectively doped into black phosphorus (BP) nanosheets, and they greatly improve its OER catalytic performance. However, the specific active sites and microscopic configurations in the atomic-scale are still ambiguous. Here, we show that the doped Te atoms prefer to bond with each other to form clusters in phosphorene and they can be further stabilized by various intrinsic defects (Stone-Wales, single vacancy defects and zigzag nanoribbon). Benefiting from the reduced binding strength of O*, Te dopants and intrinsic defects synergistically boost the catalytic activity of phosphorene. The best OER catalytic activity could be realized in the cluster SW2-Te1p (Stone-Wales defect decorated by one Te atom). For ORR, the cluster Pri-Te3p (pristine phosphorene decorated by three Te atoms) exhibits optimal catalytic activity. Calculated ORR/OER potential gaps indicate that the SW2-Te3p cluster most likely acts as the efficient bifunctional catalytic site for both ORR and OER.
Collapse
Affiliation(s)
- Junfu Zhu
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Xue XX, Shen S, Jiang X, Sengdala P, Chen K, Feng Y. Tuning the Catalytic Property of Phosphorene for Oxygen Evolution and Reduction Reactions by Changing Oxidation Degree. J Phys Chem Lett 2019; 10:3440-3446. [PMID: 31181929 DOI: 10.1021/acs.jpclett.9b00891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The development of inexpensive metal-free catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is highly desirable for fuel cells and rechargeable metal-air batteries. Black phosphorus (BP), as a new kind of two-dimensional (2D) layer material, has recently shown excellent OER electrocatalytic activity. However, atomistic understanding of the catalytic mechanism is lacking. Here, on the basis of ab initio calculations, we find that pristine phosphorene shows poor ORR/OER performances. However, oxidation can effectively tune the adsorption strength of reactive intermediates and thus change its OER/ORR electrocatalytic performance. For OER, the higher the local oxidation degree ( DlocalO) of phosphorene, the better the OER activity. Therefore, the oxidized phosphorene site with highest DlocalO shows the best OER catalytic property. In contrast, there exists an optimum DlocalO for ORR. These findings provide new insights for better understanding and improving the catalytic performances of BP-based electrocatalysts and could stimulate more theoretical and experimental studies in this area.
Collapse
Affiliation(s)
- Xiong-Xiong Xue
- School of Physics and Electronics , Hunan University , Changsha 410082 , People's Republic of China
| | - Shiyu Shen
- School of Physics and Electronics , Hunan University , Changsha 410082 , People's Republic of China
| | - Xingxing Jiang
- School of Physics and Electronics , Hunan University , Changsha 410082 , People's Republic of China
| | - Phoxay Sengdala
- School of Physics and Electronics , Hunan University , Changsha 410082 , People's Republic of China
| | - Keqiu Chen
- School of Physics and Electronics , Hunan University , Changsha 410082 , People's Republic of China
| | - Yexin Feng
- School of Physics and Electronics , Hunan University , Changsha 410082 , People's Republic of China
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics & Devices , Hunan University , Changsha 410082 , People's Republic of China
| |
Collapse
|