1
|
Yang H, Zheng H, Duan Y, Xu T, Xie H, Du H, Si C. Nanocellulose-graphene composites: Preparation and applications in flexible electronics. Int J Biol Macromol 2023; 253:126903. [PMID: 37714239 DOI: 10.1016/j.ijbiomac.2023.126903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In recent years, the pursuit of high-performance nano-flexible electronic composites has led researchers to focus on nanocellulose-graphene composites. Nanocellulose has garnered widespread interest due to its exceptional properties and unique structure, such as renewability, biodegradability, and biocompatibility. However, nanocellulose materials are deficient in electrical conductivity, which limits their applications in flexible electronics. On the other hand, graphene boasts remarkable properties, including a high specific surface area, robust mechanical strength, and high electrical conductivity, making it a promising carbon-based nanomaterial. Consequently, research efforts have intensified in exploring the preparation of graphene-nanocellulose flexible electronic composites. Although there have been studies on the application of nanocellulose and graphene, there is still a lack of comprehensive information on the application of nanocellulose/graphene in flexible electronic composites. This review examines the recent developments in nanocellulose/graphene flexible electronic composites and their applications. In this review, the preparation of nanocellulose/graphene flexible electronic composites from three aspects: composite films, aerogels, and hydrogels are first introduced. Next, the recent applications of nanocellulose/graphene flexible electronic composites were summarized including sensors, supercapacitors, and electromagnetic shielding. Finally, the challenges and future directions in this emerging field was discussed.
Collapse
Affiliation(s)
- Hongbin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongjun Zheng
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yaxin Duan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongxiang Xie
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Yin J, Reddy VS, Chinnappan A, Ramakrishna S, Xu L. Electrospun Micro/Nanofiber with Various Structures and Functions for Wearable Physical Sensors. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2158467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Amutha Chinnappan
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Jiangsu Engineering Research Center of Textile, Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, China
| |
Collapse
|
3
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
4
|
Wei Y, Li X, Wang Y, Hirtz T, Guo Z, Qiao Y, Cui T, Tian H, Yang Y, Ren TL. Graphene-Based Multifunctional Textile for Sensing and Actuating. ACS NANO 2021; 15:17738-17747. [PMID: 34723481 DOI: 10.1021/acsnano.1c05701] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Textiles are materials that are extensively used in everyday life; textile-based sensors can, therefore, be regarded as ideal devices for a health monitor. However, previously reported textile sensors have limited prospects due to their single function or incompatibility. Traditional textile sensors generally focus on signal detection, which has not been able to be combined with an actuator to provide real-time health status feedback. Thus, to date, there are no well-established health monitoring systems based on intelligent textiles. Herein, we present a wearable batch-prepared graphene-based textile based on laser-scribing and thermal-transfer technology. Integrated with four functions of strain sensing, pressure sensing, physiological electrical sensing, and sound emitting, the GT is able to detect human body signals and transduce them to sound signals when the user is in an abnormal physical state. Moreover, the GT has high linearity for both strain and pressure sensing; the coefficients of determination exceed 99.3% and 98.2%, respectively. The performance of the device remains stable up to a pressure of 1000 kPa. The response time of the GT possession reaches as low as 85 ms at 4.2 Pa pressure. Therefore, due to their diversified functions and good performance, the research on GT is expected to extend to the fields of health monitoring, sports monitoring, and so forth.
Collapse
Affiliation(s)
- Yuhong Wei
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoshi Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yunfan Wang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Thomas Hirtz
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yancong Qiao
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Brakat A, Zhu H. Nanocellulose-Graphene Derivative Hybrids: Advanced Structure-Based Functionality from Top-down Synthesis to Bottom-up Assembly. ACS APPLIED BIO MATERIALS 2021; 4:7366-7401. [PMID: 35006708 DOI: 10.1021/acsabm.1c00712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an emerging endeavor of advanced structure-based functionality in the next-generation advanced functional materials inspired by hierarchical architecture for future technical applications. This review provides an impressive range roadmap for constructing advanced functional materials based on the nanocellulose-graphene derivative hybrids, from the top-down synthesis of their hierarchical materials to the bottom-up assembly of their nanoscale building blocks. First, the roadmap started from the top-down synthesis routes of nanocellulose-graphene hierarchical materials into their derivatives, where the pristine properties of nanoscale building blocks are still accessible and processable. Then, the stable-strong synergistic interfacial interactions between nanocellulose chains and graphene derivative nanosheets are uniquely well-suited in this roadmap for constructing scalable hybrid materials with interesting emergent properties. After that, the roadmap presented the bottom-up assembly approaches of these versatile nanoscale building blocks through self-assembly, templating, and mimicking of the bioinspired hierarchical structures toward advanced functional materials. Thereafter, toward understanding the specificity, superiority, and functionality of such hybrid materials, the roadmap discussed the properties and potential applications so far. Finally, the roadmap pointed out the key challenges and future outlooks, paving the way for comprehensive understanding and ideal designing of hybrid structures from nanocellulose and graphene derivatives.
Collapse
Affiliation(s)
- Abdelrahman Brakat
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Li K, Clarkson CM, Wang L, Liu Y, Lamm M, Pang Z, Zhou Y, Qian J, Tajvidi M, Gardner DJ, Tekinalp H, Hu L, Li T, Ragauskas AJ, Youngblood JP, Ozcan S. Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS NANO 2021; 15:3646-3673. [PMID: 33599500 DOI: 10.1021/acsnano.0c07613] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In nature, cellulose nanofibers form hierarchical structures across multiple length scales to achieve high-performance properties and different functionalities. Cellulose nanofibers, which are separated from plants or synthesized biologically, are being extensively investigated and processed into different materials owing to their good properties. The alignment of cellulose nanofibers is reported to significantly influence the performance of cellulose nanofiber-based materials. The alignment of cellulose nanofibers can bridge the nanoscale and macroscale, bringing enhanced nanoscale properties to high-performance macroscale materials. However, compared with extensive reviews on the alignment of cellulose nanocrystals, reviews focusing on cellulose nanofibers are seldom reported, possibly because of the challenge of aligning cellulose nanofibers. In this review, the alignment of cellulose nanofibers, including cellulose nanofibrils and bacterial cellulose, is extensively discussed from different aspects of the driving force, evaluation, strategies, properties, and applications. Future perspectives on challenges and opportunities in cellulose nanofiber alignment are also briefly highlighted.
Collapse
Affiliation(s)
- Kai Li
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Caitlyn M Clarkson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Lu Wang
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, Maine 04469, United States
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, Maine 04469, United States
| | - Yu Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Meghan Lamm
- Manufacturing Demonstration Facility, Manufacturing Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yubing Zhou
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ji Qian
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Mehdi Tajvidi
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, Maine 04469, United States
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, Maine 04469, United States
| | - Douglas J Gardner
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, Maine 04469, United States
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, Maine 04469, United States
| | - Halil Tekinalp
- Manufacturing Demonstration Facility, Manufacturing Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
- UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey P Youngblood
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Soydan Ozcan
- Manufacturing Demonstration Facility, Manufacturing Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| |
Collapse
|
7
|
Brakat A, Zhu H. Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform. NANO-MICRO LETTERS 2021; 13:94. [PMID: 34138367 PMCID: PMC8006521 DOI: 10.1007/s40820-021-00627-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/24/2021] [Indexed: 05/03/2023]
Abstract
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications. However, integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities. Altogether, the affinity, stability, dispersibility, modification, and functionalization are some of the key merits permitting their synergistic interfacial interactions, which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties. Moreover, the high performance of such hybrids could be achievable through green and straightforward approaches. In this context, the review covered the most advanced nanocellulose-graphene hybrids, focusing on their synthetization, functionalization, fabrication, and multi-sensing applications. These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical, environmental, and human bio-signals detections, mimicking, and in-situ monitoring.
Collapse
Affiliation(s)
- Abdelrahman Brakat
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
8
|
Wu T, Ding M, Shi C, Qiao Y, Wang P, Qiao R, Wang X, Zhong J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine. NANOMATERIALS 2020; 10:nano10020196. [PMID: 31979245 PMCID: PMC7074939 DOI: 10.3390/nano10020196] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Nanocellulose/nanocarbon composites are newly emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as "classical" carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distributes the carbon nanoparticles in an aqueous environment. Nanocellulose/nanocarbon composites can be prepared with many advantageous properties, such as high mechanical strength, flexibility, stretchability, tunable thermal and electrical conductivity, tunable optical transparency, photodynamic and photothermal activity, nanoporous character and high adsorption capacity. They are therefore promising for a wide range of industrial applications, such as energy generation, storage and conversion, water purification, food packaging, construction of fire retardants and shape memory devices. They also hold great promise for biomedical applications, such as radical scavenging, photodynamic and photothermal therapy of tumors and microbial infections, drug delivery, biosensorics, isolation of various biomolecules, electrical stimulation of damaged tissues (e.g., cardiac, neural), neural and bone tissue engineering, engineering of blood vessels and advanced wound dressing, e.g., with antimicrobial and antitumor activity. However, the potential cytotoxicity and immunogenicity of the composites and their components must also be taken into account.
Collapse
|
10
|
Fan J, Zhang S, Li F, Yang Y, Du M. Recent advances in cellulose-based membranes for their sensing applications. CELLULOSE (LONDON, ENGLAND) 2020; 27:9157-9179. [PMID: 32934443 PMCID: PMC7483080 DOI: 10.1007/s10570-020-03445-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 05/13/2023]
Abstract
ABSTRACT In recent years, sensing applications have played a very important role in various fields. As a novel natural material, cellulose-based membranes with many merits can be served as all kinds of sensors. This review summarizes the recent progress of cellulose membranes as sensors, mainly focusing on their preparation processes and sensing properties. In addition, the opportunities and challenges of cellulose membrane-based sensors are also prospected. This review provides some references for the design of cellulose membrane materials for sensing applications in the future.
Collapse
Affiliation(s)
- Jiang Fan
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Fei Li
- The Second Kindergarten, Economic and Technological Development Zone, Xi’an, 710021 People’s Republic of China
| | - Yonglin Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Min Du
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| |
Collapse
|
11
|
Abstract
With the advent of wearable electronic devices in our daily lives, there is a need for soft, flexible, and conformable devices that can provide electronic capabilities without sacrificing comfort. Electronic textiles (e-textiles) combine electronic capabilities of devices such as sensors, actuators, energy harvesting and storage devices, and communication devices with the comfort and conformability of conventional textiles. An important method to fabricate such devices is by coating conventionally used fibers and yarns with electrically conductive materials to create flexible capacitors, resistors, transistors, batteries, and circuits. Textiles constitute an obvious choice for deployment of such flexible electronic components due to their inherent conformability, strength, and stability. Coating a layer of electrically conducting material onto the textile can impart electronic capabilities to the base material in a facile manner. Such a coating can be done at any of the hierarchical levels of the textile structure, i.e., at the fiber, yarn, or fabric level. This review focuses on various electrically conducting materials and methods used for coating e-textile devices, as well as the different configurations that can be obtained from such coatings, creating a smart textile-based system.
Collapse
|