1
|
Liu W, Su J, Shi Q, Wang J, Chen X, Zhang S, Li M, Cui J, Fan C, Sun B, Wang G. RGD Peptide-Conjugated Selenium Nanocomposite Inhibits Human Glioma Growth by Triggering Mitochondrial Dysfunction and ROS-Dependent MAPKs Activation. Front Bioeng Biotechnol 2022; 9:781608. [PMID: 35004643 PMCID: PMC8733670 DOI: 10.3389/fbioe.2021.781608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/10/2021] [Indexed: 01/17/2023] Open
Abstract
Chemotherapy is still one of the most common ways to treat human glioblastoma in clinic. However, severe side effects limited its clinic application. Design of cancer-targeted drugs with high efficiency and low side effect is urgently needed. Herein, silver nanoparticles (Ag NPs) and nano-selenium (Se NPs) conjugated with RGD peptides (Ag@Se@RGD NPs) to target integrin high-expressed glioma were designed. The results found that Ag@Se@RGD NPs displayed stable particle size and morphology in physiological condition, and induced significant integrin-targeted intracellular uptake. Ag@Se@RGD NPs in vitro dose-dependently inhibited U251 human glioma cells growth by induction of cells apoptosis through triggering the loss of mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), and MAPKs activation. However, ROS inhibition dramatically attenuated Ag@Se@RGD NPs-induced MAPKs activation, indicating the significant role of ROS as an early apoptotic event. Importantly, Ag@Se@RGD NPs administration in vivov effectively inhibited U251 tumor xenografts growth by induction of apoptosis through regulation MAPKs activation. Taken together, our findings validated the rational design that Ag-Se NPs conjugated with RGD peptides was a promising strategy to combat human glioma by induction of apoptosis through triggering mitochondrial dysfunction and ROS-dependent MAPKs activation.
Collapse
Affiliation(s)
- Wenjian Liu
- Department of Oncology, Second Affiliated Hospital of Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, China
| | - Jing Su
- Department of Geriatrics, Taian City Central Hospital, Taian, China
| | - Qiang Shi
- Department of Oncology, Second Affiliated Hospital of Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, China
| | - Jinlei Wang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, China
| | - Xiao Chen
- Department of Neurosurgery, Taian City Central Hospital, Taian, China
| | - Shizhong Zhang
- Department of Neurosurgery, Taian City Central Hospital, Taian, China
| | - Mengkao Li
- Department of Neurosurgery, Taian City Central Hospital, Taian, China
| | - Jie Cui
- Department of Oncology, Second Affiliated Hospital of Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, China
| | - Cundong Fan
- Department of Oncology, Second Affiliated Hospital of Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, China
| | - Beibei Sun
- Department of Oncology, Second Affiliated Hospital of Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, China
| | - Guojun Wang
- Department of Neurosurgery, Taian City Central Hospital, Taian, China
| |
Collapse
|
2
|
Mahmud S, Elfiky AA, Amin A, Mohanto SC, Rahman E, Acharjee UK, Saleh A. Targeting SARS-CoV-2 nonstructural protein 15 endoribonuclease: an in silico perspective. Future Virol 2021. [PMID: 34290822 PMCID: PMC8285111 DOI: 10.2217/fvl-2020-0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
The newly emerged human coronavirus, SARS-CoV-2, had begun to spread last year and sparked worldwide. In this study, molecular docking is utilized to test some previously approved drugs against the SARS-CoV-2 nonstructural protein 15 (Nsp15). We screened 23 drugs, from which three (saquinavir, valrubicin and aprepitant) show a paramount predicted binding affinity (-9.1, -9.6 and -9.2 kcal/mol, respectively) against SARS-CoV-2 Nsp15. Moreover, saquinavir and aprepitant make nonbonded interactions with Leu201 in the active site cavity of Nsp15, while the drug valrubicin interacts with Arg199 and Leu201. This binding pattern may be effective against the targeted protein, leading to Nsp15 blockage and virus abolition. Additionally, the pharmacological properties of the screened drugs are known since they have been approved against different viruses.
Collapse
Affiliation(s)
- Shafi Mahmud
- Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Al Amin
- Institute of Biological Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sumon Chandro Mohanto
- Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ekhtiar Rahman
- Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Uzzal Kumar Acharjee
- Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abu Saleh
- Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
3
|
Ali S, Sharma AS, Ahmad W, Zareef M, Hassan MM, Viswadevarayalu A, Jiao T, Li H, Chen Q. Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications. Crit Rev Anal Chem 2020; 51:454-481. [PMID: 32233874 DOI: 10.1080/10408347.2020.1743964] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noble bimetallic and trimetallic nanoparticles (NBT-NPs) have superior biomedical applications as compared to their monometallic counterparts. The performance of these nanomaterials depends on their composition, shape and size. Hence, the controlled-synthesis of these nanomaterials is a hot area of research. Till date, no review article in the literature accounts regarding the controlled-synthesis and biomedical applications related to morphology, optimum composition, biocompatibility and versatile chemistry of NBT-NPs. Taking this into contemplation, an effort was made to provide a clear insight into the morphology-controlled synthesis and size/shape-dependent anticancer and bactericidal applications of NBT-NPs. Chemical reduction method for the controlled-synthesis of NBT-NPs is reviewed critically. Furthermore, the potential role of various reaction parameters such as time, reducing agents, stabilizing/capping agents, nature/concentration of precursors, temperature and pH in the shape/size-controlled synthesis of these nanomaterials are discussed. In the second part of this article, anticancer and bactericidal applications of the NBT-NPs are reviewed and the influences of optimum composition, size, surface structure, versatile chemistry and synergism are studied. Finally, the current challenges in the controlled-synthesis and biomedical applications of these nanomaterials, and prospects to resolve related issues are discussed. HighlightsChemical reduction method for the synthesis of NBT-NPs is reviewed.The influences of parameters on the control synthesis of NBT-NPs are discussed.Antibacterial and anticancer applications and cytotoxicity of NBT-NPs are reviewed.Possible solutions for the key challenges are discussed.Outlooks about the synthesis and biomedical applications of NBT-NPs are discussed.
Collapse
Affiliation(s)
- Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehdi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | | | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
4
|
Cheng J, Liu Y, He L, Liu W, Chen Y, Liu F, Guo Y, Ran H, Yang L. Novel Multifunctional Nanoagent for Visual Chemo/Photothermal Therapy of Metastatic Lymph Nodes via Lymphatic Delivery. ACS OMEGA 2020; 5:3194-3206. [PMID: 32118135 PMCID: PMC7045339 DOI: 10.1021/acsomega.9b03258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 05/15/2023]
Abstract
Breast cancer is one of the major diseases that threaten women's health. Lymph node (LN) metastasis is the most common metastatic path of breast cancer. Finding a simple, effective, and safe strategy to eliminate metastatic tumors in LNs is highly desired for clinical use. Carbon nanoparticles (CNs), as an LN tracer, have been widely used in the clinical setting. In addition, previous experiments have confirmed that CNs have good photoacoustic imaging and photothermal effects. In this study, we used CNs as a photothermal conversion material and drug carrier, poly(lactic-co-glycolic acid) (PLGA) as a film-forming material, and docetaxel as a chemotherapy drug to prepare multifunctional nanoparticles (DOC-CNPs). The prepared DOC-CNPs present as a black solution, which shows smooth spherical particles under light microscopy and transmission electron microscopy (TEM), and they have a good ability for liquid-gas phase transition, good dispersibility, high drug-loading capacity, and low cytotoxicity. In vitro, they can release drugs and inhibit tumor cells after laser irradiation. The photoacoustic (PA) signal intensity and the photothermal conversion efficiency increased with an increase in the concentration of DOC-CNPs. In vivo, after administration, the DOC-CNPs reached the LNs. After laser irradiation, the DOC-CNPs absorbed laser energy, and the temperature of the LNs increased high enough to achieve photothermal therapy under PA and ultrasound monitoring. Fracture of the DOC-CNPs was caused by the liquid-gas phase transition with the increased temperature, and the ruptured DOC-CNPs released docetaxel to achieve targeted chemotherapy. These findings suggested that DOC-CNPs can achieve precise treatment for metastatic LNs of breast cancer with PA and ultrasound visualization.
Collapse
Affiliation(s)
- Juan Cheng
- Ultrasound
Department, Second Affiliated Hospital of
Chongqing Medical University, Chongqing 400010, China
- Chongqing
Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Ying Liu
- Department
of Breast and Thyroid Surgery, Second Affiliated
Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lingyun He
- Department
of Scientific Research and Education Section, Chongqing Health Center for Women and Children, Chongqing 401120, China
| | - Weiwei Liu
- Ultrasound
Department, Second Affiliated Hospital of
Chongqing Medical University, Chongqing 400010, China
- Chongqing
Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Yuli Chen
- Ultrasound
Department, Second Affiliated Hospital of
Chongqing Medical University, Chongqing 400010, China
- Chongqing
Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Fengqiu Liu
- Ultrasound
Department, Second Affiliated Hospital of
Chongqing Medical University, Chongqing 400010, China
- Chongqing
Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Yuan Guo
- Ultrasound
Department, Second Affiliated Hospital of
Chongqing Medical University, Chongqing 400010, China
- Chongqing
Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Haitao Ran
- Ultrasound
Department, Second Affiliated Hospital of
Chongqing Medical University, Chongqing 400010, China
- Chongqing
Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, China
| | - Lu Yang
- Department
of Breast and Thyroid Surgery, Second Affiliated
Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
5
|
Chen CC, Chang DY, Li JJ, Chan HW, Chen JT, Chang CH, Liu RS, Chang CA, Chen CL, Wang HE. Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and their application for photothermal cancer treatment in tumor-bearing mice. J Mater Chem B 2020; 8:65-77. [DOI: 10.1039/c9tb02194a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PEGylated gold nanostars (pAuNSs) and their radioactive surrogate (111In–DTPA–pAuNS), with unique physiochemical properties, are thought to be a promising agent for image-guided photothermal therapy (PTT).
Collapse
Affiliation(s)
- Chao-Cheng Chen
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | - Deng-Yuan Chang
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | - Jia-Je Li
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | - Hui-Wen Chan
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | | | | | - Ren-Shyan Liu
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
- National Yang-Ming University
| | - C. Allen Chang
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
- National Yang-Ming University
| | - Chuan-Lin Chen
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | - Hsin-Ell Wang
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| |
Collapse
|