1
|
Ramírez MDLA, Bou-Gharios J, Freis B, Draussin J, Cheignon C, Charbonnière LJ, Laurent S, Gevart T, Gasser A, Jung S, Rossetti F, Tillement O, Noel G, Pivot X, Detappe A, Bégin-Colin S, Harlepp S. Spacer engineering in nanoparticle-peptide conjugates boosts targeting specificity for tumor-associated antigens. NANOSCALE 2025; 17:5021-5032. [PMID: 39903198 DOI: 10.1039/d4nr02931c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Developing and synthesizing nano-objects capable of enabling early targeted diagnosis and ensuring effective tumor treatment represents a significant challenge in the theranostic field. Among various nanoparticles (NPs), iron oxide nanoparticles (IONPs) have made significant contributions to advancing this field. However, a key challenge lies in achieving selective recognition of specific cell types. In oncology, the primary goal is to develop innovative strategies to enhance NP uptake by tumors, primarily through active targeting. This involves adding targeting ligands (TL) to the NP surface to facilitate tumor accumulation and increase retention within the tumor microenvironment. Despite biofunctionalization strategies, overall tumor uptake remains modest at only 5-7% of the injected dose per gram. In this work, we demonstrate the effect of spacing between the NPs and the TL to improve their availability and thus the tumor uptake of the complex. This proof-of-concept study targets the epidermal growth factor receptor (EGFR) using a peptide as a targeting ligand. Specifically, we characterized the PEG-peptide coupled to dendronized IONPs, including the density of grafted TL. These nano-objects underwent in vitro evaluation to assess their ability to specifically target and be internalized by tumor cells. Therapeutically, compared to non-functionalized NPs, the presence of the TL with a PEG linker enhanced targeting efficacy and increased internalization, leading to improved photothermal efficacy.
Collapse
Affiliation(s)
- María de Los Angeles Ramírez
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, University of Strasbourg, 67000 Strasbourg, France
| | - Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Julien Draussin
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, Strasbourg, Cedex 2 67087, France
| | - Loic J Charbonnière
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, Strasbourg, Cedex 2 67087, France
| | - Sophie Laurent
- Service de Chimie Générale, Organique et Biomédicale, Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Thomas Gevart
- Service de Chimie Générale, Organique et Biomédicale, Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Adeline Gasser
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Sebastian Jung
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Fabien Rossetti
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
| | - Georges Noel
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, University of Strasbourg, 67000 Strasbourg, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Sylvie Bégin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| |
Collapse
|
2
|
Freis B, Kiefer C, Ramirez MDLA, Harlepp S, Mertz D, Pichon B, Iacovita C, Laurent S, Begin S. Defects or no defects? Or how to design 20-25 nm spherical iron oxide nanoparticles to harness both magnetic hyperthermia and photothermia. NANOSCALE 2024; 16:20542-20555. [PMID: 39422589 DOI: 10.1039/d4nr01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Designing iron oxide nanoparticles (IONPs) to effectively combine magnetic hyperthermia (MH) and photothermia (PTT) in one IONP formulation presents a significant challenge to ensure a multimodal therapy allowing the adaptation of the treatment to each patient. Recent research has highlighted the influence of factors such as the size, shape, and amount of defects on both therapeutic approaches. In this study, 20-25 nm spherical IONPs with a spinel composition were synthesized by adapting the protocol of the thermal decomposition method to control the amount of defects. By tuning different synthesis parameters such as the precursor nature, the introduction of a well-known oxidizing agent, dibenzylether (DBE), in the reaction medium, the heating rate and duration and the introduction of a nucleation step, we thus established two different synthesis protocols, one involving the use of a small amount of DBE leading to IONPs with only a few defects and another that took an optimized route to oxidize the wüstite nuclei during the IONP growth and led to IONPs exhibiting more structural and oxygen defects. IONPs exhibiting fewer defects showed enhanced MH and PTT heating values even when immobilized in a matrix, despite a decrease in MH heating values showing that they release mainly heat through the Brownian mechanism. These MH measurements have also confirmed that defects play a key role in enhancing Néel relaxation. PTT measurements demonstrated higher heating values with IONPs with fewer defects and a correlation between Urbach energy and SAR values suggesting an impact of vacancy defects on PTT performances. Therefore, IONPs exhibiting fewer defects under our synthesis conditions appear as suitable IONPs to combine both MH and PTT treatments with high performances. These findings pave the way for promising applications in combined therapies for cancer treatment.
Collapse
Affiliation(s)
- Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Céline Kiefer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Maria de Los Angeles Ramirez
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Damien Mertz
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Benoit Pichon
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania.
| | - Sophie Laurent
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Sylvie Begin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| |
Collapse
|
3
|
Freis B, Ramirez MDLA, Kiefer C, Harlepp S, Iacovita C, Henoumont C, Affolter-Zbaraszczuk C, Meyer F, Mertz D, Boos A, Tasso M, Furgiuele S, Journe F, Saussez S, Bégin-Colin S, Laurent S. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies. Pharmaceutics 2023; 15:pharmaceutics15041104. [PMID: 37111590 PMCID: PMC10143744 DOI: 10.3390/pharmaceutics15041104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s−1·mM−1, SARMH = 580 W·g−1, SARPTT = 800 W·g−1; and r2 = 407 s−1·mM−1, SARMH = 899 W·g−1, SARPTT = 300 W·g−1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.
Collapse
|
4
|
Freis B, Ramírez MDLÁ, Furgiuele S, Journe F, Cheignon C, Charbonnière LJ, Henoumont C, Kiefer C, Mertz D, Affolter-Zbaraszczuk C, Meyer F, Saussez S, Laurent S, Tasso M, Bégin-Colin S. Bioconjugation studies of an EGF-R targeting ligand on dendronized iron oxide nanoparticles to target head and neck cancer cells. Int J Pharm 2023; 635:122654. [PMID: 36720449 DOI: 10.1016/j.ijpharm.2023.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.
Collapse
Affiliation(s)
- Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - María De Los Ángeles Ramírez
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Sonia Furgiuele
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Clémence Cheignon
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
| | - Loïc J Charbonnière
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
| | - Céline Henoumont
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Celine Kiefer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Damien Mertz
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Christine Affolter-Zbaraszczuk
- Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
| | - Florent Meyer
- Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Sophie Laurent
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Mariana Tasso
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Sylvie Bégin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| |
Collapse
|
5
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
6
|
Adam A, Harlepp S, Ghilini F, Cotin G, Freis B, Goetz J, Bégin S, Tasso M, Mertz D. Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Bizeau J, Adam A, Bégin‐Colin S, Mertz D. Serum Albumin Antifouling Effects of Hydroxypropyl‐Cellulose and Pluronic F127 Adsorbed on Isobutyramide‐Grafted Stellate Silica Nanoparticles. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joëlle Bizeau
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Alexandre Adam
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Sylvie Bégin‐Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| |
Collapse
|
8
|
Lozano-Pedraza C, Plaza-Mayoral E, Espinosa A, Sot B, Serrano A, Salas G, Blanco-Andujar C, Cotin G, Felder-Flesch D, Begin-Colin S, Teran FJ. Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation. NANOSCALE ADVANCES 2021; 3:6490-6502. [PMID: 36133493 PMCID: PMC9417955 DOI: 10.1039/d1na00601k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/26/2021] [Indexed: 05/03/2023]
Abstract
Heating mediated by iron oxide nanoparticles subjected to near infrared irradiation has recently gained lots of interest. The high optical loss values reported in combination with the optical technologies already existing in current clinical practices, have made optical heating mediated by iron oxide nanoparticles an attractive choice for treating internal or skin tumors. However, the identification of the relevant parameters and the influence of methodologies for quantifying the optical losses released by iron oxide nanoparticles are not fully clear. Here, we report on a systematic study of different intrinsic (size, shape, crystallinity, and iron oxidation state) and extrinsic (aggregation, concentration, intracellular environment and irradiation conditions) parameters involved in the photothermal conversion of iron oxide nanoparticles under near infrared irradiation. We have probed the temperature increments to determine the specific loss power of iron oxide nanoparticles with different sizes and shapes dispersed in colloidal suspensions or inside live breast cancer cells. Our results underline the relevance of crystal surface defects, aggregation, concentration, magnetite abundance, excitation wavelength and density power on the modulation of the photothermal conversion. Contrary to plasmonic or magnetic losses, no significant influence of nanoparticle size nor shape was observed on the optical losses released by the studied iron oxide nanoparticles. Interestingly, no significant differences of measured temperature increments and specific loss power values were either observed when nanoparticles were inside live cells or in colloidal dispersion. Our findings highlight the advantages of optical heat losses released by iron oxide nanoparticles for therapeutic applications.
Collapse
Affiliation(s)
| | | | - Ana Espinosa
- iMdea Nanociencia, Campus Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| | - Begoña Sot
- iMdea Nanociencia, Campus Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| | - Aida Serrano
- Dpto. Electrocerámica, Instituto de Cerámica y Vidrio ICV-CSIC, Kelsen 5 28049 Madrid Spain
| | - Gorka Salas
- iMdea Nanociencia, Campus Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| | - Cristina Blanco-Andujar
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 F-67000 Strasbourg France
| | - Geoffrey Cotin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 F-67000 Strasbourg France
| | - Delphine Felder-Flesch
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 F-67000 Strasbourg France
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 F-67000 Strasbourg France
| | - Francisco J Teran
- iMdea Nanociencia, Campus Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| |
Collapse
|
9
|
Periyathambi P, Balian A, Hu Z, Padro D, Hernandez LI, Uvdal K, Duarte J, Hernandez FJ. Activatable MRI probes for the specific detection of bacteria. Anal Bioanal Chem 2021; 413:7353-7362. [PMID: 34704109 PMCID: PMC8626403 DOI: 10.1007/s00216-021-03710-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Activatable fluorescent probes have been successfully used as molecular tools for biomedical research in the last decades. Fluorescent probes allow the detection of molecular events, providing an extraordinary platform for protein and cellular research. Nevertheless, most of the fluorescent probes reported are susceptible to interferences from endogenous fluorescence (background signal) and limited tissue penetration is expected. These drawbacks prevent the use of fluorescent tracers in the clinical setting. To overcome the limitation of fluorescent probes, we and others have developed activatable magnetic resonance probes. Herein, we report for the first time, an oligonucleotide-based probe with the capability to detect bacteria using magnetic resonance imaging (MRI). The activatable MRI probe consists of a specific oligonucleotide that targets micrococcal nuclease (MN), a nuclease derived from Staphylococcus aureus. The oligonucleotide is flanked by a superparamagnetic iron oxide nanoparticle (SPION) at one end, and by a dendron functionalized with several gadolinium complexes as enhancers, at the other end. Therefore, only upon recognition of the MRI probe by the specific bacteria is the probe activated and the MRI signal can be detected. This approach may be widely applied to detect bacterial infections or other human conditions with the potential to be translated into the clinic as an activatable contrast agent.
Collapse
Affiliation(s)
- Prabu Periyathambi
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Alien Balian
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden
| | - Daniel Padro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
| | - Luiza I Hernandez
- Department of Clinical and Experimental Medicine, Linkӧping University, Linköping, Sweden
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden
| | - Joao Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22181, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
10
|
Ximendes E, Marin R, Shen Y, Ruiz D, Gómez‐Cerezo D, Rodríguez‐Sevilla P, Lifante J, Viveros‐Méndez PX, Gámez F, García‐Soriano D, Salas G, Zalbidea C, Espinosa A, Benayas A, García‐Carrillo N, Cussó L, Desco M, Teran FJ, Juárez BH, Jaque D. Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100077. [PMID: 34117667 PMCID: PMC11468761 DOI: 10.1002/adma.202100077] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/10/2021] [Indexed: 05/05/2023]
Abstract
Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.
Collapse
Affiliation(s)
- Erving Ximendes
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Yingli Shen
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Diego Ruiz
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Present address:
Madrid Institute of Materials Science(ICMM)CSIC. Sor Juana Inés de la CruzMadridCantoblanco28049Spain
| | | | | | - Jose Lifante
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Perla X. Viveros‐Méndez
- Universidad Autónoma de ZacatecasUnidad Académica de Ciencia y Tecnología de la Luz y la MateriaCarretera Zacatecas‐Guadalajara km. 6Ejido la escondidaZacatecasZacatecas98160México
| | - Francisco Gámez
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
- Present address:
Department of Physical Chemistry, Faculty of ScienceUniversity of GranadaAvenida de la Fuente Nueva S/NGranada18071Spain
| | | | - Gorka Salas
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Carmen Zalbidea
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Ana Espinosa
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Antonio Benayas
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | | | - Lorena Cussó
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Francisco J. Teran
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Beatriz H. Juárez
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| |
Collapse
|
11
|
Gerosa M, Grande MD, Busato A, Vurro F, Cisterna B, Forlin E, Gherlinzoni F, Morana G, Gottardi M, Matteazzi P, Speghini A, Marzola P. Nanoparticles exhibiting self-regulating temperature as innovative agents for Magnetic Fluid Hyperthermia. Nanotheranostics 2021; 5:333-347. [PMID: 33732604 PMCID: PMC7961124 DOI: 10.7150/ntno.55695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
During the last few years, for therapeutic purposes in oncology, considerable attention has been focused on a method called magnetic fluid hyperthermia (MFH) based on local heating of tumor cells. In this paper, an innovative, promising nanomaterial, M48 composed of iron oxide-based phases has been tested. M48 shows self-regulating temperature due to the observable second order magnetic phase transition from ferromagnetic to paramagnetic state. A specific hydrophilic coating based on both citrate ions and glucose molecules allows high biocompatibility of the nanomaterial in biological matrices and its use in vivo. MFH mediator efficiency is demonstrated in vitro and in vivo in breast cancer cells and tumors, confirming excellent features for biomedical application. The temperature increase, up to the Curie temperature, gives rise to a phase transition from ferromagnetic to paramagnetic state, promoting a shortage of the r2 transversal relaxivity that allows a switch in the contrast in Magnetic Resonance Imaging (MRI). Combining this feature with a competitive high transversal (spin-spin) relaxivity, M48 paves the way for a new class of temperature sensitive T2 relaxing contrast agents. Overall, the results obtained in this study prepare for a more affordable and tunable heating mechanism preventing the damages of the surrounding healthy tissues and, at the same time, allowing monitoring of the temperature reached.
Collapse
Affiliation(s)
- Marco Gerosa
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy
| | - Marco Dal Grande
- Nanomaterials Research Group, Department of Biotechnology, University of Verona and INSTM, RU Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Federica Vurro
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Enrico Forlin
- MBN Nanomaterialia S.p.A., Via Giacomo Bortolan, 42, 31050 Carbonera Treviso, Italy
| | - Filippo Gherlinzoni
- Foundation for Nanotheranostics Research in Cancer Therapy, RNC, Treviso, Italy
| | - Giovanni Morana
- Foundation for Nanotheranostics Research in Cancer Therapy, RNC, Treviso, Italy
| | - Michele Gottardi
- Foundation for Nanotheranostics Research in Cancer Therapy, RNC, Treviso, Italy
| | - Paolo Matteazzi
- MBN Nanomaterialia S.p.A., Via Giacomo Bortolan, 42, 31050 Carbonera Treviso, Italy.,Foundation for Nanotheranostics Research in Cancer Therapy, RNC, Treviso, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology, University of Verona and INSTM, RU Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
12
|
Vurro F, Jabalera Y, Mannucci S, Glorani G, Sola-Leyva A, Gerosa M, Romeo A, Romanelli MG, Malatesta M, Calderan L, Iglesias GR, Carrasco-Jiménez MP, Jimenez-Lopez C, Perduca M. Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles. NANOMATERIALS 2021; 11:nano11030766. [PMID: 33803544 PMCID: PMC8002967 DOI: 10.3390/nano11030766] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
Magnetococcus marinus magnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nanoparticles as drug nanocarriers and hyperthermia agents. In the present study we explore the enhanced BMNPs internalization following upon their encapsulation by poly (lactic-co-glycolic) acid (PLGA), a Food and Drug Administration (FDA) approved molecule. Internalization is further optimized by the functionalization of the nanoformulation with the cell-penetrating TAT peptide (TATp). Our results evidence that cells treated with the nanoformulation [TAT-PLGA(BMNPs)] show up to 80% more iron internalized (after 72 h) compared to that of cells treated with BMNPs (40%), without any significant decrease in cell viability. This nanoformulation showing optimal internalization is further characterized. In particular, the present manuscript demonstrates that neither its magnetic properties nor its performance as a hyperthermia agent are significantly altered due to the encapsulation. In vitro experiments demonstrate that, following upon the application of an alternating magnetic field on U87MG cells treated with BMNPs and TAT-PLGA(BMNPs), the cytotoxic effect of BMNPs was not affected by the TAT-PLGA enveloping. Based on that, difficulties shown in previous studies related to poor cell uptake of BMNPs can be overcome by the novel nanoassembly described here.
Collapse
Affiliation(s)
- Federica Vurro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Giulia Glorani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (A.S.-L.); (M.P.C.-J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Marco Gerosa
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Alessandro Romeo
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.V.); (S.M.); (M.G.); (M.G.R.); (M.M.); (L.C.)
| | - Guillermo R. Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - María P. Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (A.S.-L.); (M.P.C.-J.)
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
- Correspondence: (C.J.-L.); (M.P.); Tel.: +34-958-249-833 (C.J.-L.); +39-045-802-7984 (M.P.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
- Correspondence: (C.J.-L.); (M.P.); Tel.: +34-958-249-833 (C.J.-L.); +39-045-802-7984 (M.P.)
| |
Collapse
|
13
|
Antifouling Strategies of Nanoparticles for Diagnostic and Therapeutic Application: A Systematic Review of the Literature. NANOMATERIALS 2021; 11:nano11030780. [PMID: 33803884 PMCID: PMC8003124 DOI: 10.3390/nano11030780] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) are promising platforms for the development of diagnostic and therapeutic tools. One of the main hurdle to their medical application and translation into the clinic is the fact that they accumulate in the spleen and liver due to opsonization and scavenging by the mononuclear phagocyte system. The “protein corona” controls the fate of NPs in vivo and becomes the interface with cells, influencing their physiological response like cellular uptake and targeting efficiency. For these reasons, the surface properties play a pivotal role in fouling and antifouling behavior of particles. Therefore, surface engineering of the nanocarriers is an extremely important issue for the design of useful diagnostic and therapeutic systems. In recent decades, a huge number of studies have proposed and developed different strategies to improve antifouling features and produce NPs as safe and performing as possible. However, it is not always easy to compare the various approaches and understand their advantages and disadvantages in terms of interaction with biological systems. Here, we propose a systematic study of literature with the aim of summarizing current knowledge on promising antifouling coatings to render NPs more biocompatible and performing for diagnostic and therapeutic purposes. Thirty-nine studies from 2009 were included and investigated. Our findings have shown that two main classes of non-fouling materials (i.e., pegylated and zwitterionic) are associated with NPs and their applications are discussed here highlighting pitfalls and challenges to develop biocompatible tools for diagnostic and therapeutic uses. In conclusion, although the complexity of biofouling strategies and the field is still young, the collective data selected in this review indicate that a careful tuning of surface moieties is a pivotal step to lead NPs through their future clinical applications.
Collapse
|
14
|
Mertz D, Harlepp S, Goetz J, Bégin D, Schlatter G, Bégin‐Colin S, Hébraud A. Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR‐7504 CNRS‐Université de Strasbourg 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2 France
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, StrasbourgUniversité de Strasbourg Fédération de Médecine Translationnelle de Strasbourg (FMTS) 67000 Strasbourg France
| | - Jacky Goetz
- INSERM UMR_S1109, Tumor Biomechanics, StrasbourgUniversité de Strasbourg Fédération de Médecine Translationnelle de Strasbourg (FMTS) 67000 Strasbourg France
| | - Dominique Bégin
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Guy Schlatter
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Sylvie Bégin‐Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR‐7504 CNRS‐Université de Strasbourg 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2 France
| | - Anne Hébraud
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| |
Collapse
|
15
|
Levada K, Omelyanchik A, Rodionova V, Weiskirchen R, Bartneck M. Magnetic-Assisted Treatment of Liver Fibrosis. Cells 2019; 8:E1279. [PMID: 31635053 PMCID: PMC6830324 DOI: 10.3390/cells8101279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury can be induced by viruses, toxins, cellular activation, and metabolic dysregulation and can lead to liver fibrosis. Hepatic fibrosis still remains a major burden on the global health systems. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are considered the main cause of liver fibrosis. Hepatic stellate cells are key targets in antifibrotic treatment, but selective engagement of these cells is an unresolved issue. Current strategies for antifibrotic drugs, which are at the critical stage 3 clinical trials, target metabolic regulation, immune cell activation, and cell death. Here, we report on the critical factors for liver fibrosis, and on prospective novel drugs, which might soon enter the market. Apart from the current clinical trials, novel perspectives for anti-fibrotic treatment may arise from magnetic particles and controlled magnetic forces in various different fields. Magnetic-assisted techniques can, for instance, enable cell engineering and cell therapy to fight cancer, might enable to control the shape or orientation of single cells or tissues mechanically. Furthermore, magnetic forces may improve localized drug delivery mediated by magnetism-induced conformational changes, and they may also enhance non-invasive imaging applications.
Collapse
Affiliation(s)
- Kateryna Levada
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Alexander Omelyanchik
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Valeria Rodionova
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
- National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, D-52074 Aachen, Germany.
| |
Collapse
|