1
|
Chauhan P, Kumar A. Piezoelectric, Thermoelectric, and Photocatalytic Water Splitting Properties of Janus Arsenic Chalcohalide Monolayers. ACS OMEGA 2024; 9:33723-33734. [PMID: 39130573 PMCID: PMC11308028 DOI: 10.1021/acsomega.4c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
In this study, we systematically investigate the piezoelectric, thermoelectric, and photocatalytic properties of novel two-dimensional Janus arsenic chalcohalide monolayers, AsXX' (X = S and Se and X' = Cl, Br, and I) using density functional theory. The positive phonon spectra and ab initio molecular dynamics simulation plots indicate these monolayers to be dynamically and thermally stable. The mechanical stability of these monolayers is confirmed by a nonzero elastic constant (C ij ), Young's modulus (Y 2D), and Poisson ratio (ν). These monolayers exhibit strong out-of-plane piezoelectric coefficients, making them candidate materials for piezoelectric devices. Our calculated results indicate that these monolayers have a low lattice thermal conductivity (κl) and high thermoelectric figure of merit (zT) up to 1.51 at 800 K. These monolayers have an indirect bandgap, high carrier mobility, and strong visible light absorption spectra. Furthermore, the AsSCl, AsSBr, and AsSeI monolayers exhibit appropriate band alignment for water splitting. The calculated value of the corrected solar-to-hydrogen conversion efficiency can reach up to 19%. The nonadiabatic molecular dynamics simulations reveal the prolonged electron-hole recombination rates of 1.52 0.98, and 0.67 ns for AsSCl, AsSBr, and AsSeI monolayers, respectively. Our findings demonstrate these monolayers to be potential candidates in energy-harvesting fields.
Collapse
Affiliation(s)
- Poonam Chauhan
- Department of Physics, Central University of Punjab, VPO Ghudda, Bathinda 151401, India
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, VPO Ghudda, Bathinda 151401, India
| |
Collapse
|
2
|
Jakhar M, Kumar A, Ahluwalia PK, Tankeshwar K, Pandey R. Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2221. [PMID: 35329672 PMCID: PMC8954018 DOI: 10.3390/ma15062221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
Abstract
Splitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve high-yield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties has received much attention in this field. Owing to the recent developments in high-end computation and advanced electronic structure theories, first principles studies offer powerful tools to screen photocatalytic systems reliably and efficiently. This review is organized to highlight the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of 2D materials for the improvement in photocatalytic overall water-splitting. The advancement in the strategies including (i) single-atom catalysts, (ii) defect engineering, (iii) strain engineering, (iv) Janus structures, (v) type-II heterostructures (vi) Z-scheme heterostructures (vii) multilayer configurations (viii) edge-modification in nanoribbons and (ix) the effect of pH in overall water-splitting are summarized to improve the existing problems for a photocatalytic catalytic reaction such as overcoming large overpotential to trigger the water-splitting reactions without using cocatalysts. This review could serve as a bridge between theoretical and experimental research on next-generation 2D photocatalysts.
Collapse
Affiliation(s)
- Mukesh Jakhar
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | | | - Kumar Tankeshwar
- Department of Physics and Astrophysics, Central University of Haryana, Mahendragarh 123031, India;
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
3
|
Zhao L, Yu G, Huang X, Chen W. Realizing Efficient Catalytic Performance and High Selectivity for Oxygen Reduction Reaction on a 2D Ni 2SbTe 2 Monolayer. Inorg Chem 2022; 61:2284-2291. [PMID: 35044752 DOI: 10.1021/acs.inorgchem.1c03662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the immediate challenges for the large-scale commercialization of hydrogen-based fuel cells is to develop cost-effective electrocatalysts to enable cathodic oxygen reduction reaction (ORR). Herein, we focus on the potential of the two-dimensional (2D) ternary chalcogenide Ni2SbTe2 monolayer as a high-performance electrocatalyst for the ORR using density function theory. Our computed results reveal that there are an obvious hybridization and electron transfer between the O 2p and Te 5p orbitals, which can activate the adsorbed oxygen and trigger the whole ORR process, with an overpotential as low as 0.33 V. In addition, the adsorption capacity of the monolayer surface for oxygen molecules can be effectively enhanced by doping with Fe or Co atoms. The Ni2SbTe2 monolayers doped with Fe or Co atoms not only maintain their original excellent ORR catalytic activity but also improve selectivity toward the four-electron (4e) reduction pathway. We highly anticipate that this work can provide excellent candidates and new ideas for designing low-cost and high-performance ORR catalysts to replace noble metal Pt-based catalysts in fuel cells.
Collapse
Affiliation(s)
- Lusi Zhao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Guangtao Yu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.,Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Xuri Huang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Wei Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.,Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Bykov M, Fedotenko T, Chariton S, Laniel D, Glazyrin K, Hanfland M, Smith JS, Prakapenka VB, Mahmood MF, Goncharov AF, Ponomareva AV, Tasnádi F, Abrikosov AI, Bin Masood T, Hotz I, Rudenko AN, Katsnelson MI, Dubrovinskaia N, Dubrovinsky L, Abrikosov IA. High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded BeN_{4} Polymorph. PHYSICAL REVIEW LETTERS 2021; 126:175501. [PMID: 33988447 DOI: 10.1103/physrevlett.126.175501] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/16/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN_{4}. A triclinic phase of beryllium tetranitride tr-BeN_{4} was synthesized from elements at ∼85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN_{4} layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated π systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN_{4} layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN_{4} layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.
Collapse
Affiliation(s)
- Maxim Bykov
- The Earth and Planets Laboratory, Carnegie Institution for Science, Washington, D.C. 20015, USA
- College of Arts and Science, Howard University, Washington, D.C. 20059, USA
| | - Timofey Fedotenko
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Dominique Laniel
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Konstantin Glazyrin
- Photon Sciences, Deutsches Electronen Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Michael Hanfland
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| | - Jesse S Smith
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Mohammad F Mahmood
- College of Arts and Science, Howard University, Washington, D.C. 20059, USA
| | - Alexander F Goncharov
- The Earth and Planets Laboratory, Carnegie Institution for Science, Washington, D.C. 20015, USA
| | - Alena V Ponomareva
- Materials Modeling and Development Laboratory, National University of Science and Technology "MISIS," 119049 Moscow, Russia
| | - Ferenc Tasnádi
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Alexei I Abrikosov
- Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden
| | - Talha Bin Masood
- Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden
| | - Ingrid Hotz
- Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden
| | - Alexander N Rudenko
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Radboud University, Institute for Molecules and Materials, 6525AJ Nijmegen, The Netherlands
- Department of Theoretical Physics and Applied Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Mikhail I Katsnelson
- Radboud University, Institute for Molecules and Materials, 6525AJ Nijmegen, The Netherlands
- Department of Theoretical Physics and Applied Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
| | - Igor A Abrikosov
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| |
Collapse
|
5
|
Kishore MRA, Varunaa R, Bayani A, Larsson K. Theoretical investigation on [Formula: see text] monolayer for an efficient bifunctional water splitting catalyst. Sci Rep 2020; 10:21411. [PMID: 33293563 PMCID: PMC7722721 DOI: 10.1038/s41598-020-77999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022] Open
Abstract
The search for an active, stable, and abundant semiconductor-based bifunctional catalysts for solar hydrogen production will make a substantial impact on the sustainable development of the society that does not rely on fossil reserves. The photocatalytic water splitting mechanism on a [Formula: see text] monolayer has here been investigated by using state-of-the-art density functional theory calculations. For all possible reaction intermediates, the calculated changes in Gibbs free energy showed that the oxygen evolution reaction will occur at, and above, the potential of 2.06 V (against the NHE) as all elementary steps are exergonic. In the case of the hydrogen evolution reaction, a potential of 0.52 V, or above, was required to make the reaction take place spontaneously. Interestingly, the calculated valence band edge and conduction band edge positions for a [Formula: see text] monolayer are located at the potential of 2.60 V and 0.56 V, respectively. This indicates that the photo-generated holes in the valence band can oxidize water to oxygen, and the photo-generated electrons in the conduction band can spontaneously reduce water to hydrogen. Hence, the results from the present theoretical investigation show that the [Formula: see text] monolayer is an efficient bifunctional water-splitting catalyst, without the need for any co-catalyst.
Collapse
Affiliation(s)
- M. R. Ashwin Kishore
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - R. Varunaa
- Department of Physics, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610101 India
| | - Amirhossein Bayani
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - Karin Larsson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| |
Collapse
|
6
|
Dong H, Ji Y, Ding L, Li Y. Strategies for computational design and discovery of two-dimensional transition-metal-free materials for electro-catalysis applications. Phys Chem Chem Phys 2019; 21:25535-25547. [PMID: 31738352 DOI: 10.1039/c9cp04284a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this perspective, we review two new strategies for computational design and discovery of two-dimensional (2D) transition-metal (TM) free electro-catalysts for the oxygen reduction reaction (ORR) and the nitrogen reduction reaction (NRR). The "2D binary compound" strategy for designing ORR electro-catalysts shows promising applications, which benefits from abundant intrinsic catalytic sites for the adsorption of reaction intermediates. And with the "activated B site" strategy for designing NRR electro-catalysts, several novel NRR electro-catalysts with extremely low limiting potential are developed. Computational-simulation-driven material design from a bottom-up method could not only provide rational strategies, but also accelerate the discovery of novel materials.
Collapse
Affiliation(s)
- Huilong Dong
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | | | | | | |
Collapse
|