1
|
Palanikumar L, Kalmouni M, Houhou T, Abdullah O, Ali L, Pasricha R, Thomas S, Afzal AJ, Barrera FN, Magzoub M. pH-responsive upconversion mesoporous silica nanospheres for combined multimodal diagnostic imaging and targeted photodynamic and photothermal cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541491. [PMID: 37292655 PMCID: PMC10245854 DOI: 10.1101/2023.05.22.541491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have garnered considerable interest as non-invasive cancer treatment modalities. However, these approaches remain limited by low solubility, poor stability and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome these limitations, we have designed biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium and gadolinium) and bismuth selenide (NaYF 4 :Yb/Er/Gd,Bi 2 Se 3 ) within a mesoporous silica shell that encapsulates a PS, Chlorin e6 (Ce6), in its pores. NaYF 4 :Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites the Ce6 to generate cytotoxic reactive oxygen species (ROS), while the PTA Bi 2 Se 3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging (MRI) of the nanospheres. The mesoporous silica shell is coated with lipid/polyethylene glycol (DPPC/cholesterol/DSPE-PEG) to ensure retention of the encapsulated Ce6 and minimize interactions with serum proteins and macrophages that impede tumor targeting. Finally, the coat is functionalized with the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into cancer cells within the mildly acidic tumor microenvironment. Following uptake by cancer cells in vitro , NIR laser irradiation of the nanospheres caused substantial cytotoxicity due to ROS production and hyperthermia. The nanospheres facilitated tumor MRI and thermal imaging, and exhibited potent NIR laser light-induced antitumor effects in vivo via combined PDT and PTT, with no observable toxicity to healthy tissue, thereby substantially prolonging survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.
Collapse
Affiliation(s)
- L. Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Tatiana Houhou
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Osama Abdullah
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sneha Thomas
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed J. Afzal
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Liang JL, Jin XK, Zhang SM, Huang QX, Ji P, Deng XC, Cheng SX, Chen WH, Zhang XZ. Specific activation of cGAS-STING pathway by nanotherapeutics-mediated ferroptosis evoked endogenous signaling for boosting systemic tumor immunotherapy. Sci Bull (Beijing) 2023; 68:622-636. [PMID: 36914548 DOI: 10.1016/j.scib.2023.02.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway could effectively initiate antitumor immunity, but specific activation of STING pathway is still an enormous challenge. Herein, a ferroptosis-induced mitochondrial DNA (mtDNA)-guided tumor immunotherapy nanoplatform (designated as HBMn-FA) was elaborately developed for activating and boosting STING-based immunotherapy. On the one hand, the high-levels of reactive oxygen species (ROS) in tumor cells induced by HBMn-FA-mediated ferroptosis elicited mitochondrial stress to cause the release of endogenous signaling mtDNA, which specifically initiate cGAS-STING pathway with the cooperation of Mn2+. On the other hand, the tumor-derived cytosolic double-stranded DNA (dsDNA) from debris of death cells caused by HBMn-FA further activated the cGAS-STING pathway in antigen-presenting cells (e.g., DCs). This bridging of ferroptosis and cGAS-STING pathway could expeditiously prime systemic antitumor immunity and enhance the therapeutic efficacy of checkpoint blockade to suppress tumor growth in both localized and metastatic tumor models. The designed nanotherapeutic platform paves the way for novel tumor immunotherapy strategies that are based on specific activation of STING pathway.
Collapse
Affiliation(s)
- Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qian-Xiao Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Design and scale-up of amorphous drug nanoparticles production via a one-step anhydrous continuous process. Int J Pharm 2022; 628:122304. [DOI: 10.1016/j.ijpharm.2022.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
|
4
|
pH-responsive albumin-coated biopolymeric nanoparticles with lapatinab for targeted breast cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213039. [PMID: 35908475 DOI: 10.1016/j.bioadv.2022.213039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 12/17/2022]
Abstract
One can enhance the therapeutic index of anti-cancer drugs using albumin as a tumor homing agent for targeted cancer therapy. Herein, we sought to load lapatinib (LAPA) into small albumin-coated biopolymeric (poly-lactic co-glycolic acid (PLGA)) nanoparticles (APL NPs) by an emulsification method to improve the anti-tumor efficacy of lapatinib. The prepared APL NPs exhibited a small spherical core with an average diameter of 120.5 ± 10.2 nm with a narrow particle size distribution, high drug loading capacity (LC of 9.65 ± 1.53 %), good entrapment efficiency (EE of 75.55 ± 3.25 %), enhanced colloidal stability and a pH-responsive controlled drug release profile. Their cell-uptake and cancer cell growth inhibition were significantly higher compared to free LAPA and uncoated PLGA-LAPA (UPL) NPs, most likely because aggressive breast tumor cells over-express albumin receptors and utilize albumin as nutrient source for their growth. In addition, APL NPs possessed enhanced tumor accumulation and prolonged blood residence time compared to free LAPA and UPL NPs, allowing for potent tumor growth inhibition while exhibiting excellent biosafety. In short, the current study exploited a new and simple strategy to concurrently improve the safety and efficacy of LAPA for breast cancer treatment.
Collapse
|
5
|
Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced Permeability and Retention Effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther 2022; 39:102915. [PMID: 35597441 DOI: 10.1016/j.pdpdt.2022.102915] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | | - Surya Prakash Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
6
|
Zhang R, Liu T, Li W, Ma Z, Pei P, Zhang W, Yang K, Tao Y. Tumor microenvironment-responsive BSA nanocarriers for combined chemo/chemodynamic cancer therapy. J Nanobiotechnology 2022; 20:223. [PMID: 35549949 PMCID: PMC9097166 DOI: 10.1186/s12951-022-01442-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment (TME), characterized by high glutathione (GSH), high hydrogen peroxide (H2O2) and acidic pH levels, is favorable for the growth, invasion and metastasis of cancer cells. Taking advantage of the specific characteristics of tumors, TME-responsive GCBD NPs are designed to deliver nanoscale coordination polymers (NCPs, GA-Cu) and chemotherapy drugs (doxorubicin, DOX) based on bovine serum albumin (BSA) nanocarriers into cancer cells for combined chemodynamic therapy (CDT) and chemotherapy. In an acidic environment, GCBD NPs could release approximately 90% copper ions, which can not only consume overexpressed GSH to modulate the TME but can also react with endogenous H2O2 in a Fenton-like reaction to achieve the CDT effect. Meanwhile, the released DOX could enter the nucleus of tumor cells and affect their proliferation to achieve efficient chemotherapy. Both in vitro and in vivo experiments showed that GCBD NPs had good biosafety and could effectively inhibit the growth of cancer cells. GCBD NPs are promising as a biocompatible nanoplatform to exploit TME characteristics for combined chemo and chemodynamic therapy, providing a novel strategy to eradicate tumors with high efficiency and specificity.
Collapse
Affiliation(s)
- Ruiyi Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhiyuan Ma
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
7
|
Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, Che Q, Guo J, Su Z. Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Front Pharmacol 2022; 13:829796. [PMID: 35153797 PMCID: PMC8832880 DOI: 10.3389/fphar.2022.829796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
Mesoporous silica nanocarrier (MSN) preparations have a wide range of medical applications. Studying the biocompatibility of MSN is an important part of clinical transformation. Scientists have developed different types of mesoporous silica nanocarriers (MSNs) for different applications to realize the great potential of MSNs in the field of biomedicine, especially in tumor treatment. MSNs have achieved good results in diagnostic bioimaging, tissue engineering, cancer treatment, vaccine development, biomaterial application and diagnostics. MSNs can improve the therapeutic efficiency of drugs, introduce new drug delivery strategies, and provide advantages that traditional drugs lack. It is necessary not only to innovate MSNs but also to comprehensively understand their biological distribution. In this review, we summarize the various medical uses of MSN preparations and explore the factors that affect their distribution and biocompatibility in the body based on metabolism. Designing more reasonable therapeutic nanomedicine is an important task for the further development of the potential clinical applications of MSNs.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou, China
| | - Jiao Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jiao Guo, ; Zhengquan Su,
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jiao Guo, ; Zhengquan Su,
| |
Collapse
|
8
|
Jin X, Xu C, Hu J, Yao S, Hu Z, Wang B. A biodegradable multifunctional nanoplatform based on antimonene nanosheets for synergistic cancer phototherapy and dual imaging. J Mater Chem B 2021; 9:9333-9346. [PMID: 34723316 DOI: 10.1039/d1tb01275d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, nanomaterials have been well-studied in cancer therapy, but some of them often experience difficulties with degradation in vivo, which could cause severe damage to the human body. Among numerous biodegradable nanomaterials, antimonene nanosheets (AMNSs) are versatile, and possess photothermal and photodynamic properties and photoacoustic imaging (PAI) and drug loading ability. Herein, we employed a clearable multifunctional system. The small molecule photosensitizer IR820 and the gold nanoparticles (AuNPs) at small sizes of approximately 5 nm were loaded onto AMNSs coated with biodegradable chitosan (CS). This nanoplatform showed excellent photothermal and photodynamic properties, satisfactory degradability and photoacoustic imaging ability, good biocompatibility and effective NIR light triggered intracellular synergistic treatment. It also displayed good fluorescence imaging ability in the experiment of cell uptake. These suggested that this versatile nanoplatform was able to significantly enhance the therapeutic efficiency based on synergistic phototherapy, and could also be applied in fluorescence and photoacoustic dual imaging for integrating diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaokang Jin
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chengfeng Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jinhua Hu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shuting Yao
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhiwen Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
9
|
Wei X, Tang Z, Wu H, Zuo X, Dong H, Tan L, Wang W, Liu Y, Wu Z, Shi L, Wang N, Li X, Xiao X, Guo Z. Biofunctional magnesium-coated Ti6Al4V scaffolds promote autophagy-dependent apoptosis in osteosarcoma by activating the AMPK/mTOR/ULK1 signaling pathway. Mater Today Bio 2021; 12:100147. [PMID: 34704011 PMCID: PMC8523865 DOI: 10.1016/j.mtbio.2021.100147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The recurrence of osteosarcoma (OS) after reconstruction using Ti6Al4V prostheses remains a major problem in the surgical treatment of OS. Modification of the surfaces of Ti6Al4V prostheses with antitumor functions is an important strategy for improving therapeutic outcomes. Magnesium (Mg) coating has been shown to be multifunctional: it exhibits osteogenic and angiogenic properties and the potential to inhibit OS. In this study, we determined the proper concentration of released Mg2+ with respect to OS inhibition and biosafety and evaluated the anti-OS effects of Mg-coated Ti6Al4V scaffolds. We found that the release of Mg2+ during short-term and long-term degradation could significantly inhibit the proliferation and migration of HOS and 143B cells. Increased cell apoptosis and excessive autophagy were also observed, and further evidence of AMPK/mTOR/ULK1 signaling pathway activation was obtained both in vitro and in vivo, which suggested that the biofunctional scaffolds induce OS inhibition. Our study demonstrates the ability of an Mg coating to inhibit OS and may contribute to the further application of Mg-coated Ti6Al4V prostheses. Multifunctional Mg coating is considerable surface modification for Ti6Al4V prostheses. Mg2+ releasing by the scaffolds could significantly inhibit the proliferation and migration of OS cells. The biofunctional scaffolds could inhibit OS by activating autophagy-dependent apoptosis. The AMPK/mTOR/ULK-1 pathway was involved in autophagy-depended apoptosis induced by the scaffolds.
Collapse
Affiliation(s)
- X Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - H Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - X Zuo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - H Dong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - L Tan
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - W Wang
- Department of Immunology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Y Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - L Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - N Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - X Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - X Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Z Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| |
Collapse
|
10
|
Hu X, Zhang Q, Dai X, Sun J, Gao F. Dual-Emission Carbonized Polymer Dots for Ratiometric pH Sensing, pH-Dependent Generation of Singlet Oxygen, and Imaging-Guided Dynamics Monitoring of Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:7663-7672. [PMID: 35006696 DOI: 10.1021/acsabm.1c00892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pH environment in cancer cells has been demonstrated to display vital influences on the therapeutic effect of photodynamic therapy (PDT). It is very interesting to develop pH-responsive probes for simultaneous pH sensing and dynamics monitoring of the effects of PDT, and therefore assessing the correlation between them. In this study, a multifunctional fluorescence probe, dual-emission carbonized polymer dot (CPD) in blue and red regions, which uses ethylene imine polymer (PEI) and 4,4',4″,4‴-(porphine-5, 10, 15, 20-tetrayl) tetrakis (benzoic acid) (TCPP) as precursors through a one-step hydrothermal amide reaction, has been designed for ratiometric pH sensing, generating pH-dependent 1O2 for PDT of cancer cells, and investigating the dynamics effects of PDT through pH-guided imaging. The prepared CPDs were successfully used for ratiometric pH response, pH-dependent generation of 1O2, and dynamics monitoring PDT in HeLa cells. This study may provide an alternative strategy to prepare CPD-based theranostic integrated nanoprobes for PDT through the rational design of precursors.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
11
|
Liang JL, Luo GF, Chen WH, Zhang XZ. Recent Advances in Engineered Materials for Immunotherapy-Involved Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007630. [PMID: 34050564 DOI: 10.1002/adma.202007630] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Immunotherapy that can activate immunity or enhance the immunogenicity of tumors has emerged as one of the most effective methods for cancer therapy. Nevertheless, single-mode immunotherapy is still confronted with several critical challenges, such as the low immune response, the low tumor infiltration, and the complex immunosuppression tumor microenvironment. Recently, the combination of immunotherapy with other therapeutic modalities has emerged as a powerful strategy to augment the therapeutic outcome in fighting against cancer. In this review, recent research advances of the combination of immunotherapy with chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, metabolic therapy, and microwave thermotherapy are summarized. Critical challenges and future research direction of immunotherapy-based cancer therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
12
|
Liu Z, Xie Z, Wu X, Chen Z, Li W, Jiang X, Cao L, Zhang D, Wang Q, Xue P, Zhang H. pH-responsive black phosphorus quantum dots for tumor-targeted photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 35:102429. [PMID: 34237475 DOI: 10.1016/j.pdpdt.2021.102429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
Black phosphorus quantum dots(BPQDs) have shown a good application prospect in the field of tumor therapy due to their photoelectric effect and good biodegradability. Due to the active endocytosis and fast metabolic efficiency of tumor cells, BPQDs are easy to be absorbed by tumor cells. However, this does not guarantee that BPQDs will be completely targeted to tumor cells, and normal cells will also absorb BPQDs. Because the cell membrane is negatively charged, BPQDs are also negatively charged and are not easily absorbed by cells under the action of electrostatic repulsion. Surface pegylation is the most common modification method of black phosphorus at present. However, surface pegylation can reduce the uptake of BPQDs by tumor cells. Positive PEG is also easy to be recognized and swallowed by the reticuloendothelial system. The inherent instability and poor tumor targeting of BPQDs under physiological conditions limit further research and clinical application. For this purpose, we selected cationic polymer polyethylenimine (PEI) to modify BPQDs and then added RGD peptides targeting tumor cells. An outer layer of negatively charged PEG+DMMA makes the nanosystem more stable . In the acidic environment of the tumor, the PEG layer has a charge reversal, and the positively charged PEI and the RGD polypeptide BPQDs targeted by the tumor cells are released into the tumor cells. It provides a new method for efficiently and accurately transporting BPQDs, a novel photosensitive nanomaterial, into tumor cells for photodynamic therapy.
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongjian Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Xinqiang Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zijian Chen
- Surgical laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wenting Li
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Qiwen Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Jin X, Yao S, Qiu F, Mao Z, Wang B. A multifunctional hydrogel containing gold nanorods and methylene blue for synergistic cancer phototherapy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Liang J, Liu J, Jin X, Yao S, Chen B, Huang Q, Hu J, Wan J, Hu Z, Wang B. Versatile Nanoplatform Loaded with Doxorubicin and Graphene Quantum Dots/Methylene Blue for Drug Delivery and Chemophotothermal/Photodynamic Synergetic Cancer Therapy. ACS APPLIED BIO MATERIALS 2020; 3:7122-7132. [DOI: 10.1021/acsabm.0c00942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junlong Liang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianjun Liu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaokang Jin
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuting Yao
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biling Chen
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qianwei Huang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinhua Hu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junmin Wan
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiwen Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
15
|
'Prodrug-Like' Acetylmannosamine Modified Liposomes Loaded With Arsenic Trioxide for the Treatment of Orthotopic Glioma in Mice. J Pharm Sci 2020; 109:2861-2873. [PMID: 32534027 DOI: 10.1016/j.xphs.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Glioma is one of the fatal intracranial cancers that is a huge challenge to decrease the death rate currently. The deep penetration and high accumulation of therapeutic inorganic ions into the tumor site are extremely impeded due to the existence of physiological barriers, which limits to widen the indication of some drugs such as arsenic trioxide. The previous data have confirmed that the mannose substrate (MAN) without acetyl groups facilitates vesicles to go into the brain. Given that deacetylation of Ac4MAN groups on the surface of liposomes under the enzyme incubation occurred, namely 'prodrug-like' features of vesicles, the liposomes could more easily penetrate the BBB, target the glioma site, release arsenic trioxide, and inhibit the growth of glioma cells in the brain. Besides, the possibility of Ac4MAN binding to Gluts could be reduced due to the steric hindrance of acetyl groups, decreasing the off-target effects of vesicles. Here, we developed 'prodrug-like' arsenic trioxide (As2O3, ATO)-loaded liposomes inserted with distearoyl phospho-ethanolamine-polyethylene glycol-1000-p-carboxylpheny-α-d-acetylmannosamine (DSPE-PEG-1000-Ac4MAN), which was named Ac4MAN-ATO-LIP. Cytotoxic experiments of liposomes indicated that the toxicity of Ac4MAN-ATO-LIP was lower than that of free ATO but stronger than that of ATO-LIP (without insertion of DSPE-PEG-1000-Ac4MAN). The uptake of vesicles by U87 glioma cells displayed that the cellular uptake of Ac4MAN-Rho-LIP (labeled by rhodamine) was remarkably improved, compared with Rho-LIP. The in vivo biodistribution results showed the superiority of Ac4MAN-Rho-LIP in enhanced intracranial accumulation. Furthermore, the treatment of orthotopic glioma in Balb/c nude mice with Ac4MAN-ATO-LIP elongated the survival time of the animals than that with physiological saline, free ATO, or ATO-LIP, respectively. All the results suggested that the Ac4MAN-ATO-LIP had stronger anti-glioma effects as well as lower toxicities, and may be a promising approach for the treatment of brain cancer.
Collapse
|