1
|
Zhang B, Guo Y, Lu Y, Ma D, Wang X, Zhang L. Bibliometric and visualization analysis of the application of inorganic nanomaterials to autoimmune diseases. Biomater Sci 2024; 12:3981-4005. [PMID: 38979695 DOI: 10.1039/d3bm02015k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Objective: To conduct bibliometric analysis of the application of inorganic nanomaterials to autoimmune diseases to characterize current research trends and to visualize past and emerging trends in this field in the past 15 years. Methods: The evolution and thematic trends of the application of inorganic nanomaterials to autoimmune diseases from January 1, 1985, to March 15, 2024, were analyzed by bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database. A total of 734 relevant reports in the literature were evaluated according to specific characteristics such as year of publication, journal, institution, country/region, references, and keywords. VOSviewer was used to build co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization. Some important subtopics identified by bibliometric characterization are further discussed and reviewed. Result: From 2009 to 2024, annual publications worldwide increased from 11 to 95, an increase of 764%. ACS Nano published the most papers (14) with the most citations (1372). China (230 papers, 4922 citations) and the Chinese Academy of Sciences (36 papers, 718 citations) are the most productive and influential country and institution, respectively. The first 100 keywords were co-clustered to form four clusters: (1) the application of inorganic nanomaterials in drug delivery, (2) the application of inorganic nano-biosensing to autoimmune diseases, (3) the use of inorganic nanomaterials for imaging applied to autoimmune diseases, and (4) the application of inorganic nanomaterials in the treatment of autoimmune diseases. Combination therapy, microvesicles, photothermal therapy (PTT), targeting, diagnostics, transdermal, microneedling, silver nanoparticles, psoriasis, and inflammatory cytokines are the latest high-frequency keywords, marking the emerging frontier of inorganic nanomaterials in the field of autoimmune diseases. Sub-topics were further discussed to help researchers determine the scope of research topics and plan research directions. Conclusion: Over the past 39 years, the application of inorganic nanotechnology to the field of autoimmune diseases shows extensive cooperation between countries and institutions, showing a continuous increase in the number of reports in the literature, and has clinical translation prospects. Future research should further improve the safety of inorganic nanomaterials, clarify the mechanism of action of nanomaterials, establish a standardized nanomaterial preparation and performance evaluation system, and ultimately achieve the goal of early detection and precise treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Yuanyuan Guo
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Yu Lu
- The First Clinical Medical College of Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xiahui Wang
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| |
Collapse
|
2
|
Alshammari MS, H. Taha R, Almutlq NJ, Mohamed SH. Olive leaf extract-assisted green synthesis of cd nano complex: A combined experimental and theoretical study. PLoS One 2024; 19:e0306040. [PMID: 39093887 PMCID: PMC11296625 DOI: 10.1371/journal.pone.0306040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Research in the synthesis of Schiff base ligands and their metal complexes using olive leaf extracts as a green reducing agent is an exciting area of study. In this research, a Schiff base ligand is created by combining 1-hydroxy-2-naphthaldehyde and amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide. The synthetic Schiff base is then utilized for the production of a Cd(II) nano complex for the first time with olive leaf extracts serving as the green reducing agent. The extract is obtained by harvesting, drying, and grinding the olive leaves. Various analytical techniques, including 1H NMR, 13C NMR spectroscopy, scanning electron microscope (SEM), and conductivity studies, are employed to analyze the Schiff base and its Cd(II) complex. Quantum chemical calculations are also conducted to explore the different conformers of the Cd(II) complex and their stabilities, shedding light on the synthesis pathways of the Schiff base ligand and Cd(II) complex. Extensive DFT-based geometry optimizations and frequency calculations are carried out for 1-hydroxy-2-naphthaldehyde,amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide, the Schiff base ligand, and the corresponding Cd(II) complex. Experimental and theoretical analyses confirm the presence of the azomethine (-HC = N-) group in the Schiff base and validate the formation of the Cd(II) complex in a 2:1 metal-to-ligand ratio through physicochemical characterization methods, highlighting the nanoscale structure of the complex. Combining thorough physicochemical investigations with molecular modeling simulations and the sustainable synthesis of metal complexes, valuable insights into their properties and potential applications in catalysis and drug delivery are obtained.
Collapse
Affiliation(s)
| | - Rania H. Taha
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Nowarah J. Almutlq
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Sabrein H. Mohamed
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Angela S, Fadhilah G, Hsiao WWW, Lin HY, Ko J, Lu SCW, Lee CC, Chang YS, Lin CY, Chang HC, Chiang WH. Nanomaterials in the treatment and diagnosis of rheumatoid arthritis: Advanced approaches. SLAS Technol 2024; 29:100146. [PMID: 38844139 DOI: 10.1016/j.slast.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory condition that affects persons between the ages of 20 and 40, causes synovium inflammation, cartilage loss, and joint discomfort as some of its symptoms. Diagnostic techniques for RA have traditionally been split into two main categories: imaging and serological tests. However, significant issues are associated with both of these methods. Imaging methods are costly and only helpful in people with obvious symptoms, while serological assays are time-consuming and require specialist knowledge. The drawbacks of these traditional techniques have led to the development of novel diagnostic approaches. The unique properties of nanomaterials make them well-suited as biosensors. Their compact dimensions are frequently cited for their outstanding performance, and their positive impact on the signal-to-noise ratio accounts for their capacity to detect biomarkers at low detection limits, with excellent repeatability and a robust dynamic range. In this review, we discuss the use of nanomaterials in RA theranostics. Scientists have recently synthesized, characterized, and modified nanomaterials and biomarkers commonly used to enhance RA diagnosis and therapy capabilities. We hope to provide scientists with the promising potential that nanomaterials hold for future theranostics and offer suggestions on further improving nanomaterials as biosensors, particularly for detecting autoimmune disorders.
Collapse
Affiliation(s)
- Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsuan-Yi Lin
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Joshua Ko
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven Che-Wei Lu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lin
- The Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
4
|
Ghanem HB, El-Sharkawy RG, Taha RH. Anchoring of Nanocomposites Based on Novel Metal Nanocomplexes/Nanocarbonaceous Surfaces and Assessing Their In Vivo Anticancer Effects on Ehrlich Ascites Tumor. ACS OMEGA 2022; 7:41627-41640. [PMID: 36406541 PMCID: PMC9670292 DOI: 10.1021/acsomega.2c05631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology is the study of materials' unique properties at the nanoscale. Nanomedicine is the application of nanotechnology in medicine, which has been utilized to treat some common diseases, such as cancer. The aim of the present work is to synthesize the cadmium (Cd) nanocomplex using paracetamol as a ligand with a molar ratio of 1:2 M/L that was characterized by different physicochemical methods and to explore the effect of the synthesized Cd nanocomplex on the immune system and the redox status of the body and their anticancer effects on Ehrlich ascites carcinoma (EAC) induced in mice. Eighty female albino mice were separated into Group I: control; Group II: EAC; Group III: EAC treated with a low-dose Cd nanocomplex; and Group IV: EAC treated with a high-dose Cd nanocomplex. Interleukin-6 (IL-6), NLR family pyrin domain containing 3 (NLRP3), and 8-hydroxy 2-deoxyguanosine (8-OHdG) levels were assessed by enzyme-linked immunosorbent assay (ELISA). Peroxynitrite level and glutathione peroxidase activity were assessed by spectrophotometry. NRF2 mRNA expression, cadmium content, and liver and renal toxicity were estimated. Results: There was a significant increase in IL-6, NLRP3, 8-OHdG, peroxynitrite, and NRF2 mRNA expressions and in the glutathione peroxidase activity in EAC treated with low- and high-dose Cd nanocomplexes. However, the EAC treated with high-dose Cd nanocomplex group showed significant liver and renal toxicity. Conclusion: Cadmium nanocomplex has anticancer effects on EAC induced in mice via its effects on the immune system and redox status as well as pyroptosis and epigenetic instability of the body, while high doses of Cd nanocomplex can cause liver and renal toxicity.
Collapse
Affiliation(s)
- Heba Bassiony Ghanem
- Clinical
laboratory sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf2014, Saudi Arabia
- Medical
Biochemistry Department, Faculty of Medicine, Tanta University, Tanta31527, Egypt
| | - Rehab Galal El-Sharkawy
- Chemistry
Department, College of Science, Jouf University, Sakaka, Aljouf2014, Saudi Arabia
- Chemistry
Department, Faculty of Science, Tanta University, Tanta31527, Egypt
| | - Rania Hosny Taha
- Chemistry
Department, College of Science, Jouf University, Sakaka, Aljouf2014, Saudi Arabia
- Department
of Chemistry, Faculty of Science (Girls), Al-Azhar University, PO box 11754, Yousef Abbas Str., Nasr City, Cairo, Egypt
| |
Collapse
|
5
|
Dexamethasone-Loaded Radially Mesoporous Silica Nanoparticles for Sustained Anti-Inflammatory Effects in Rheumatoid Arthritis. Pharmaceutics 2022; 14:pharmaceutics14050985. [PMID: 35631571 PMCID: PMC9143902 DOI: 10.3390/pharmaceutics14050985] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Radially mesoporous silica nanoparticles (RMSNs) with protonated amine functionality are proposed to be a dexamethasone (Dex) carrier that could achieve a sustained anti-inflammatory effect in rheumatoid arthritis (RA). High-capacity loading and a sustained release of target drugs were achieved by radially oriented mesopores and surface functionality. The maximum loading efficiency was confirmed to be about 76 wt%, which is about two times greater than that of representative mesopores silica, SBA-15. In addition, Dex-loaded RMSNs allow a sustained-release profile with about 92% of the loaded Dex for 100 h in vitro, resulting in 2.3-fold better delivery efficiency of Dex than that of the SBA-15 over the same period. In vivo evaluation of the inhibitory effects on inflammation in a RA disease rat model showed that, compared with the control groups, the group treated with Dex-loaded RMSNs sustained significant anti-inflammatory effects and recovery of cartilage over a period of 8 weeks. The in vivo effects were confirmed via micro-computed tomography, bone mineral density measurements, and modified Mankin scoring. The proposed Dex-loaded RMSNs prolonged the life of the in vivo concentrations of therapeutic agents and maximized their effect, which should encourage its application.
Collapse
|
6
|
Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021; 175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
The interactions between inorganic-based nanomaterials (NMs) and biological membranes are among the most important phenomena for developing NM-based therapeutics and resolving nanotoxicology. Herein, we introduce the structural and functional effects of inorganic-based NMs on biological membranes, mainly the plasma membrane and the endomembrane system, with an emphasis on the interface, which involves highly complex networks between NMs and biomolecules (such as membrane proteins and lipids). Significant efforts have been devoted to categorizing and analyzing the interaction mechanisms in terms of the physicochemical characteristics and biological effects of NMs, which can directly or indirectly influence the effects of NMs on membranes. Importantly, we summarize that the biological membranes act as platforms and thereby mediate NMs-immune system contacts. In this overview, the existing challenges and potential applications in the areas are addressed. A strong understanding of the discussed concepts will promote therapeutic NM designs for drug delivery systems by leveraging the NMs-membrane interactions and their functions.
Collapse
Affiliation(s)
- Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanping Jiang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Suhan Yin
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhendong Huang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|