1
|
Muthukutty B, Sathish Kumar P, Lee D, Lee S. Multichannel Carbon Nanofibers: Pioneering the Future of Energy Storage. ACS NANO 2024; 18:27287-27316. [PMID: 39324479 DOI: 10.1021/acsnano.4c11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Multichannel carbon nanofibers (MCNFs), characterized by complex hierarchical structures comprising multiple channels or compartments, have attracted considerable attention owing to their high porosity, large surface area, good directionality, tunable composition, and low density. In recent years, electrospinning (ESP) has emerged as a popular synthetic technique for producing MCNFs with exceptional properties from various polymer blends, driven by phase separation between polymers. These interactions, including van der Waals forces, covalent bonding, and ionic interactions, are crucial for MCNF production. Over time, the applications of MCNFs have expanded, making them one of the most intriguing topics in material research. MCNFs with tailored porous channels, controllable dimensions, confined spaces, high surface areas, designed architectures, and easy electrolyte access to active walls are considered optimal for electrochemical energy storage (EES) technologies. This review provides an exhaustive overview of the working principle, synthesis methods, and structural properties of MCNFs, and examines their advantages, limitations, and potential for producing multichannel architectures. Furthermore, this review explores the relationship between the composition of MCNF electrode materials for EES devices (supercapacitors and batteries) and their electrochemical performance. This review also addresses future directions and challenges in the development and utilization of MCNFs and provides insights into potential research avenues for advancing this exciting field.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ponnaiah Sathish Kumar
- Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711873, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Sungwon Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea
| |
Collapse
|
2
|
Belal MA, Yousry R, Taulo G, AbdelHamid AA, Rashed AE, El-Moneim AA. Layer-by-Layer Inkjet-Printed Manganese Oxide Nanosheets on Graphene for High-Performance Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53632-53643. [PMID: 37957019 DOI: 10.1021/acsami.3c07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The widespread adoption of wearable, movable, and implantable smart devices has sparked the evolution of flexible, miniaturized power supplies. High-resolution inkjet printing of flexible microsupercapacitor (μSC) electrodes is a fast, inexpensive, and waste-free alternative manufacturing technology. In this work, a 2D birnessite-type manganese dioxide (δ-MnO2) water-based ink is used to print 10-25 layers of δ-MnO2 symmetrically on a preprinted interdigitated cell consisting of 10 layers of electrochemically exfoliated graphene (EEG). The cell with 10 printed layers of δ-MnO2 achieved the highest specific capacitance, energy density, and power density of 0.44 mF cm-2, 0.045 μW h cm-2, and 0.0012 mW cm-2, respectively. Since inkjet-printing technology supports μSC manufacturing with parallel/series connectivity, four cells were used to study and improve the potential window and capacitance that can be used to construct μSC arrays as power banks. This work provides the first approach for designing an inkjet-printed interdigitated hybrid cell based on δ-MnO2@EEG that could be a versatile candidate for the large-scale production of flexible and printable electronic devices for energy storage.
Collapse
Affiliation(s)
- Mohamed Ahmed Belal
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Reham Yousry
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Gracian Taulo
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Ayman A AbdelHamid
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah 000, United Arab Emirates
| | - Ahmed Elsayed Rashed
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Ahmed Abd El-Moneim
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria 21934, Egypt
- Physical Chemistry Department, National Research Centre, El-Dokki, Cairo 12622, Egypt
| |
Collapse
|
3
|
Prabhakar Vattikuti SV, To Hoai N, Zeng J, Ramaraghavulu R, Nguyen Dang N, Shim J, Julien CM. Pouch-Type Asymmetric Supercapacitor Based on Nickel-Cobalt Metal-Organic Framework. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2423. [PMID: 36984303 PMCID: PMC10052718 DOI: 10.3390/ma16062423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Bimetal-organic frameworks (BMOFs) have attracted considerable attention as electrode materials for energy storage devices because of the precise control of their porous structure, surface area, and pore volume. BMOFs can promote multiple redox reactions because of the enhanced charge transfer between different metal ions. Therefore, the electroactivity of the electrodes can be significantly improved. Herein, we report a NiCo-MOF (NCMF) with a three-dimensional hierarchical nanorod-like structure prepared using a facile solvo-hydrothermal method. The as-prepared NCMF was used as the positive electrode in a hybrid pouch-type asymmetric supercapacitor device (HPASD) with a gel electrolyte (KOH+PVA) and activated carbon as the negative electrode. Because of the matchable potential windows and specific capacitances of the two electrodes, the assembled HPASD exhibits a specific capacitance of 161 F·g-1 at 0.5 A·g-1, an energy density of 50.3 Wh·kg-1 at a power density of 375 W·kg-1, and a cycling stability of 87.6% after 6000 cycles. The reported unique synthesis strategy is promising for producing high-energy-density electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Surya. V. Prabhakar Vattikuti
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Gyeongbuk, Republic of Korea
| | - Nguyen To Hoai
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Jie Zeng
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Gyeongbuk, Republic of Korea
| | | | - Nam Nguyen Dang
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Gyeongbuk, Republic of Korea
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
4
|
Runfa L, Chen X, Hongliang C, Wei Y, Yuanfang Z, Siyu C, Wenrui J, Qi Z, Yi E, Meng J, Abdullah M, Tan L. Facile synthesis of Ni 3Se 4/Ni 0.6Zn 0.4O/ZnO nanoparticle as high-performance electrode materials for electrochemical energy storage device. NANOTECHNOLOGY 2023; 34:185401. [PMID: 36669193 DOI: 10.1088/1361-6528/acb4f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
To enhance the performance of transition metal chalcogenide composite electrode material, a key point is a composite design and preparation based on the synergistic effect between the oxide and selenide materials. With a facile 'one step template-annealing' step, Ni3Se4, Ni0.6Zn0.4O and ZnO are simultaneously synthesized, by 500 °C annealing. With the increase of annealing temperature from 350 °C to 600 °C, nickel selenides change from NiSe2to Ni3Se4to NiSe. The charge storage capacity increases first and then decreases with the increase of annealing temperature, and the 500 °C annealing obtained three compound composite Ni3Se4/Ni0.6Zn0.4O/ZnO (NNZ-500) nanoparticle material displayed a high specific capacitance of 1089.2 F g-1at 1 A g-1, and excellent cycle stability of 99.8% capacitance retention after 2000 cycles at 5 A g-1. Moreover, an asymmetric supercapacitor was assembled with NNZ-500 as the positive electrode material and activated carbon as the negative electrode material. This kind of asymmetric supercapacitor demonstrated a high energy density of 53.4 Wh kg-1at 819.0 W kg-1, and cycle stability with 98.6% capacitance retention after 2000 cycles. This material preparation approach provides great potential for the future development of high performance transition metal composite electrode materials in energy storage applications.
Collapse
Affiliation(s)
- Li Runfa
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cao Hongliang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yan Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhang Yuanfang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cheng Siyu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiang Wenrui
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhang Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - E Yi
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiang Meng
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Muhammad Abdullah
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liyi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
5
|
Synergistic Effect of NiO-Ga2O2-Graphene Heterostructures on Congo Red Photodegradation in Water. SEPARATIONS 2022. [DOI: 10.3390/separations9080201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We studied the effect of the mixed phase of nickel oxide–gallium oxide–graphene (NiO-Ga2O2/G) heterostructure nanocomposite on the photocatalytic degradation of Congo red dye. The effect was investigated based on NiO-Ga2O2 junction, NiO-graphene, and Ga2O2-graphene contacts. The laser-induced graphene was embedded into NiO and NiO-Ga2O2. Raman spectra confirmed the fabrication of disordered graphene and the mixed phase between the oxides and graphene. HRTEM showed that very fine nanoparticles for both NiO and Ga2O2 with a size of ~7–10 nm were synthesized. Elemental compositional expressed the formation mixed phase. The effect of graphene content was investigated at 2 and 10% wt with NiO and the heterojunction of NiO-Ga2O2. The photocurrent studies was measured of these nanocomposite film deposited on two interdigitated gold electrodes, biased by 5.0 V and irradiated by the UV source. The results of photocatalysis measurements indicated an improvement occurred upon the heterojunction between Ga2O2 and NiO, however, a dramatic improvement was observed with the addition of graphene of 10%. The results expressed that the ternary phase of p-NiO/n-Ga2O2/graphene is promising in the photocatalytic application toward Congo red decomposition.
Collapse
|
6
|
Recent Research of NiCo2O4/Carbon Composites for Supercapacitors. SURFACES 2022. [DOI: 10.3390/surfaces5030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Supercapacitors have played an important role in electrochemical energy storage. Recently, researchers have found many effective methods to improve electrode materials with more robust performances through the increasing volume of scientific publications in this field. Though nickel cobaltite (NiCo2O4), as a promising electrode material, has substantially demonstrated potential properties for supercapacitors, its composites usually show much better performances than the pristine NiCo2O4. The combination of carbon-based materials and NiCo2O4 has been implemented recently due to the dual mechanisms for energy storage and the unique advantages of carbon materials. In this paper, we review the recent research on the hybrids of NiCo2O4 and carbon nanomaterials for supercapacitors. Typically, we focused on the reports related to the composites containing graphene (or reduced graphene oxide), carbon nanotubes, and amorphous carbon, as well as the major synthesis routes and electrochemical performances. Finally, the prospect for the future work is also discussed.
Collapse
|
7
|
Ceramic Ti/TiO2/AuNP Film with 1-D Nanostructures for Selfstanding Supercapacitor Electrodes. CRYSTALS 2022. [DOI: 10.3390/cryst12060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Herein we have fabricated AuTiO2 from a one-dimensional (1D) nanocomposite by the simple oxidation method of the Ti sheet for supercapacitor applications. We intended on fabricating a microlayer extended into the sheet body to form a selfstanding electrode. Raman spectra and XRD patterns confirmed the formation of the rutile phase of the TiO2 bulk, and FESEM confirmed the growth of the 1D nanostructure made of Au/TiO2, where the Au nanoparticles reside on the tip of the TiO2 nanorods. The growth of 1D TiO2 by this method is supported by a growth mechanism during the oxidation process. Three electrodes were fabricated based on pure and doped TiO2. These electrodes were used as a selfstanding supercapacitor electrode. The Au-doped TiO2 exhibited a great improvement in the electrochemical performance at low Au concentrations, whereas the excessive Au concentration on the TiO2 surface exhibited a negative effect on the capacitance value. The highest areal capacitance of 72 mFcm−2 at a current density of 5 µAcm−2 was recorded for TiO2 doped with a low Au concentration. The mechanism of the electrochemical reaction was proposed based on Nyquist and Bode plots. The obtained results point out that the effect of Au on the TiO2 surface makes Au/TiO2 ceramic electrodes a promising material as selfstanding energy storage electrodes.
Collapse
|
8
|
Template and binder free 1D cobalt nickel hydrogen phosphate electrode materials for supercapacitor application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
One-step hydrothermal synthesis of bimetallic oxides (NiO@Mn3O4) supported on rGO: A highly efficient electrode material for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|