1
|
Żuberek E, Olejnik J, Debus J, Ho CH, Watanabe K, Taniguchi T, Bryja L, Jadczak J. Photon Upconversion of Defect-Bound Excitons in hBN-Encapsulated MoS 2 Monolayer. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:19288-19296. [PMID: 39564139 PMCID: PMC11572704 DOI: 10.1021/acs.jpcc.4c05982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Atomic defects associated with vacancies in two-dimensional transition metal dichalcogenide monolayers efficiently trap charged carriers and strongly localize excitons. Defects in semiconducting monolayers are seldomly utilized for enhancing optical phenomena, although they may provide resonant intermediate states within the energy band gap for applications with multiphoton excitations, like highly efficient and thermally robust photon upconversion. In an MoS2 monolayer encapsulated by hBN with high defect and resident electron densities, we observe an upconversion of localized exciton (XL) emission with a huge energy gain of up to 290 meV. The upconverted XL emission is robust up to temperatures of about 120 K and exhibits a sublinear or a nearly linear laser power dependence for the energy gain of about 100 meV and above 200 meV, respectively. The upconversion mechanism is explained by a cooperative energy transfer process between the photocreated and resident electrons, in which hybridized pairs of single sulfur vacancies likely act as real intermediate states. Additionally, we find a weak upconversion of the neutral exciton photoluminescence with an energy gain of about 350 meV for quasi-resonant excitation of the XL exciton. It is attributed to a two-step, two-photon absorption.
Collapse
Affiliation(s)
- Ewa Żuberek
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Justyna Olejnik
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joerg Debus
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Leszek Bryja
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Jadczak
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
2
|
Leisgang N, Miserev D, Mattiat H, Schneider L, Sponfeldner L, Watanabe K, Taniguchi T, Poggio M, Warburton RJ. Exchange Energy of the Ferromagnetic Electronic Ground State in a Monolayer Semiconductor. PHYSICAL REVIEW LETTERS 2024; 133:026501. [PMID: 39073934 DOI: 10.1103/physrevlett.133.026501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/28/2024] [Indexed: 07/31/2024]
Abstract
Mobile electrons in the semiconductor monolayer MoS_{2} form a ferromagnetic state at low temperature. The Fermi sea consists of two circles: one at the K point, the other at the K[over ˜] point, both with the same spin. Here, we present an optical experiment on gated MoS_{2} at low electron density in which excitons are injected with known spin and valley quantum numbers. The resulting trions are identified using a model which accounts for the injection process, the formation of antisymmetrized trion states, electron-hole scattering from one valley to the other, and recombination. The results are consistent with a complete spin polarization. From the splittings between different trion states, we measure the exchange energy Σ, the energy required to flip a single spin within the ferromagnetic state, as well as the intervalley Coulomb exchange energy J. We determine Σ=11.2 meV and J=5 meV at n=1.5×10^{12} cm^{-2} and find that J depends strongly on the electron density n.
Collapse
|
3
|
Jadczak J, Debus J, Olejnik J, Ho CH, Watanabe K, Taniguchi T, Bryja L. Biexciton and Singlet Trion Upconvert Exciton Photoluminescence in a MoSe 2 Monolayer Supported by Acoustic and Optical K-Valley Phonons. J Phys Chem Lett 2023; 14:8702-8708. [PMID: 37733953 PMCID: PMC10561254 DOI: 10.1021/acs.jpclett.3c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Transition metal dichalcogenide monolayers represent unique platforms for studying both electronic and phononic interactions as well as intra- and intervalley exciton complexes. Here, we investigate the upconversion of exciton photoluminescence in MoSe2 monolayers. Within the nominal transparency window of MoSe2 the exciton emission is enhanced for resonantly addressing the spin-singlet negative trion and neutral biexciton at a few tens of meV below the neutral exciton transition. We identify that the A'1 optical phonon at the K valley provides the energy gain in the upconversion process at the trion resonance, while ZA(K) phonons with their spin- and valley-switching properties support the biexciton driven upconversion of the exciton emission. Interestingly, the latter upconversion process yields unpolarized exciton photoluminescence, while the former also leads to circularly polarized emission. Our study highlights high-order exciton complexes interacting with optical and acoustic K-valley phonons and upconverting light into the bright exciton.
Collapse
Affiliation(s)
- Joanna Jadczak
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joerg Debus
- Department
of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Justyna Olejnik
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ching-Hwa Ho
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kenji Watanabe
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Leszek Bryja
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
4
|
Jadczak J, Andrzejewski J, Debus J, Ho CH, Bryja L. Resonant Exciton Scattering Reveals Raman Forbidden Phonon Modes in Layered GeS. J Phys Chem Lett 2023; 14:3986-3994. [PMID: 37083310 PMCID: PMC10165653 DOI: 10.1021/acs.jpclett.3c00783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Germanium monosulfide with an anisotropic puckered crystalline structure has recently attracted much attention due to its unique optical and electronic properties; however, exciton-phonon interactions were only superficially elucidated. We study the resonant Raman scattering and the photoluminescence of the optically active Γ-exciton in layered GeS flakes and evaluate the exciton and phonon responses on variations in the excitation energy, laser-light and emission polarizations, temperature, and laser power. A double-resonance mechanism allows for observing Raman forbidden (dark) first- and second-order longitudinal-optical phonon modes whose symmetries and energies are moreover calculated by density functional perturbation theory. For (quasi)-resonant exciton excitation, the selection rules become relaxed so that a fourth-order Fröhlich intraband process is mediated by the scattering of the electron with a longitudinal-optical and an acoustic phonon. Our results demonstrate considerable coupling between phonons and photogenerated carriers in GeS flakes and the high efficiency of multiorder scattering in optical processes.
Collapse
Affiliation(s)
- Joanna Jadczak
- Department of Experimental Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Janusz Andrzejewski
- Department of Experimental Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Joerg Debus
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Leszek Bryja
- Department of Experimental Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
5
|
Zhumagulov YV, Vagov A, Gulevich DR, Perebeinos V. Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3728. [PMID: 36364505 PMCID: PMC9656490 DOI: 10.3390/nano12213728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Charged excitons or trions are essential for optical spectra in low-dimensional doped monolayers (ML) of transitional metal dichalcogenides (TMDC). Using a direct diagonalization of the three-body Hamiltonian, we calculate the low-lying trion states in four types of TMDC MLs as a function of doping and dielectric environment. We show that the fine structure of the trion is the result of the interplay between the spin-valley fine structure of the single-particle bands and the exchange interaction. We demonstrate that by variations of the doping and dielectric environment, the fine structure of the trion energy can be tuned, leading to anticrossing of the bright and dark states, with substantial implications for the optical spectra of the TMDC ML.
Collapse
Affiliation(s)
| | - Alexei Vagov
- Faculty of Physics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | | | - Vasili Perebeinos
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
6
|
Żuberek E, Majak M, Lubczyński J, Debus J, Watanabe K, Taniguchi T, Ho CH, Bryja L, Jadczak J. Upconversion photoluminescence excitation reveals exciton-trion and exciton-biexciton coupling in hBN/WS[Formula: see text]/hBN van der Waals heterostructures. Sci Rep 2022; 12:13699. [PMID: 35953508 PMCID: PMC9372078 DOI: 10.1038/s41598-022-18104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Monolayers of transition-metal dichalcogenides with direct band gap located at the binary [Formula: see text] points of the Brillouin zone are promising materials for applications in opto- and spin-electronics due to strongly enhanced Coulomb interactions and specific spin-valley properties. They furthermore represent a unique platform to study electron-electron and electron-phonon interactions in diverse exciton complexes. Here, we demonstrate processes in which the neutral biexciton and two negative trions, namely the spin-triplet and spin-singlet trions, upconvert light into a bright intravalley exciton in an hBN-encapsulated WS[Formula: see text] monolayer. We propose that the energy gains required in the polarized upconversion photoluminescence originate from different interactions including resonant optical phonons, a cooling of resident electrons and a non-local and an anisotropic electron-hole exchange, respectively. The temperature dependence (7-120 K) of the excitonic upconversion intensity obtained at excitation energies corresponding to the biexciton and trions provides insight into an increasing phonon population as well as a thermally enhanced electron scattering. Our study sheds new light on the understanding of excitonic spin and valley properties of van der Waals heterostructures and improves the understanding of photonic upconversion mechanisms in two-dimensional quantum materials.
Collapse
Affiliation(s)
- Ewa Żuberek
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Martyna Majak
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jakub Lubczyński
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joerg Debus
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106 Taiwan
| | - Leszek Bryja
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Jadczak
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
7
|
Dandu M, Gupta G, Dasika P, Watanabe K, Taniguchi T, Majumdar K. Electrically Tunable Localized versus Delocalized Intralayer Moiré Excitons and Trions in a Twisted MoS 2 Bilayer. ACS NANO 2022; 16:8983-8992. [PMID: 35679485 DOI: 10.1021/acsnano.2c00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Moiré superlattice (mSL)-induced sub-bands in twisted van der Waals homo- and heterostructures govern their optical and electrical properties, rendering additional degrees of freedom such as twist angle. Here, we demonstrate the moiré superlattice effects on the intralayer excitons and trions in a twisted bilayer of MoS2 of H-type stacking at marginal twist angles. We identify the emissions from localized and delocalized sub-bands of intralayer moiré excitons and show their electrical modulation by the corresponding trion formation. The electrical control of the oscillator strength of the moiré excitons also results in the strong tunability of resonant Raman scattering. We find that the gate-induced doping significantly modulates the electronic moiré potential; however, leaves the excitonic moiré confinement unaltered. This effect, coupled with variable moiré trap filling by tuning the optical excitation density, allows us to delineate the different phases of localized and delocalized moiré trions. We demonstrate that the moiré excitons exhibit strong valley coherence that changes in a striking nonmonotonic W-shape with gating due to motional narrowing. These observations from the simultaneous electrostatic control of quasiparticle-dependent moiré potential will lead to exciting effects of tunable many-body phenomena in moiré superlattices.
Collapse
Affiliation(s)
- Medha Dandu
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Garima Gupta
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Pushkar Dasika
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Kausik Majumdar
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Bieniek M, Sadecka K, Szulakowska L, Hawrylak P. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1582. [PMID: 35564291 PMCID: PMC9104105 DOI: 10.3390/nano12091582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Atomically thin semiconductors from the transition metal dichalcogenide family are materials in which the optical response is dominated by strongly bound excitonic complexes. Here, we present a theory of excitons in two-dimensional semiconductors using a tight-binding model of the electronic structure. In the first part, we review extensive literature on 2D van der Waals materials, with particular focus on their optical response from both experimental and theoretical points of view. In the second part, we discuss our ab initio calculations of the electronic structure of MoS2, representative of a wide class of materials, and review our minimal tight-binding model, which reproduces low-energy physics around the Fermi level and, at the same time, allows for the understanding of their electronic structure. Next, we describe how electron-hole pair excitations from the mean-field-level ground state are constructed. The electron-electron interactions mix the electron-hole pair excitations, resulting in excitonic wave functions and energies obtained by solving the Bethe-Salpeter equation. This is enabled by the efficient computation of the Coulomb matrix elements optimized for two-dimensional crystals. Next, we discuss non-local screening in various geometries usually used in experiments. We conclude with a discussion of the fine structure and excited excitonic spectra. In particular, we discuss the effect of band nesting on the exciton fine structure; Coulomb interactions; and the topology of the wave functions, screening and dielectric environment. Finally, we follow by adding another layer and discuss excitons in heterostructures built from two-dimensional semiconductors.
Collapse
Affiliation(s)
- Maciej Bieniek
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany
| | - Katarzyna Sadecka
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ludmiła Szulakowska
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| | - Paweł Hawrylak
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| |
Collapse
|
9
|
Jadczak J, Glazov M, Kutrowska-Girzycka J, Schindler JJ, Debus J, Ho CH, Watanabe K, Taniguchi T, Bayer M, Bryja L. Upconversion of Light into Bright Intravalley Excitons via Dark Intervalley Excitons in hBN-Encapsulated WSe 2 Monolayers. ACS NANO 2021; 15:19165-19174. [PMID: 34735768 PMCID: PMC8717626 DOI: 10.1021/acsnano.1c08286] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 05/19/2023]
Abstract
Semiconducting monolayers of transition-metal dichalcogenides are outstanding platforms to study both electronic and phononic interactions as well as intra- and intervalley excitons and trions. These excitonic complexes are optically either active (bright) or inactive (dark) due to selection rules from spin or momentum conservation. Exploring ways of brightening dark excitons and trions has strongly been pursued in semiconductor physics. Here, we report on a mechanism in which a dark intervalley exciton upconverts light into a bright intravalley exciton in hBN-encapsulated WSe2 monolayers. Excitation spectra of upconverted photoluminescence reveals resonances at energies 34.5 and 46.0 meV below the neutral exciton in the nominal WSe2 transparency range. The required energy gains are theoretically explained by cooling of resident electrons or by exciton scattering with Λ- or K-valley phonons. Accordingly, an elevated temperature and a moderate concentration of resident electrons are necessary for observing the upconversion resonances. The interaction process observed between the inter- and intravalley excitons elucidates the importance of dark excitons for the optics of two-dimensional materials.
Collapse
Affiliation(s)
- Joanna Jadczak
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- (J.J.)
| | | | - Joanna Kutrowska-Girzycka
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | - Joerg Debus
- Experimental
Physics 2, TU Dortmund University, 44227 Dortmund, Germany
| | - Ching-Hwa Ho
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kenji Watanabe
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Manfred Bayer
- Experimental
Physics 2, TU Dortmund University, 44227 Dortmund, Germany
| | - Leszek Bryja
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- (L.B.)
| |
Collapse
|
10
|
Grzeszczyk M, Olkowska-Pucko K, Nogajewski K, Watanabe K, Taniguchi T, Kossacki P, Babiński A, Molas MR. Exposing the trion's fine structure by controlling the carrier concentration in hBN-encapsulated MoS 2. NANOSCALE 2021; 13:18726-18733. [PMID: 34739017 DOI: 10.1039/d1nr03855a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atomically thin materials, like semiconducting transition metal dichalcogenides, are highly sensitive to the environment. This opens up an opportunity to externally control their properties by changing their surroundings. In this work, high-quality van der Waals heterostructures assembled from hBN-encapsulated monolayer MoS2 are studied with the aid of photoluminescence, photoluminescence excitation, and reflectance contrast experiments. We demonstrate that carrier concentration in MoS2 monolayers, arising from charge transfer from impurities in the substrate, can be significantly tuned within one order of magnitude by the modification of the bottom hBN flake thickness. The studied structures, characterized by spectral lines with linewidths approaching the narrow homogeneously broadened limit enabled observations of subtle optical and spin-valley properties of excitonic complexes. Our results allowed us to resolve three optically-active negatively charged excitons in MoS2 monolayers, which are assigned to the intravalley singlet, intervalley singlet, and intervalley triplet states.
Collapse
Affiliation(s)
- Magdalena Grzeszczyk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Katarzyna Olkowska-Pucko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Karol Nogajewski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 305-0044, Japan
| | - Piotr Kossacki
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| |
Collapse
|
11
|
Nutting D, Prando GA, Severijnen M, Barcelos ID, Guo S, Christianen PCM, Zeitler U, Galvão Gobato Y, Withers F. Electrical and optical properties of transition metal dichalcogenides on talc dielectrics. NANOSCALE 2021; 13:15853-15858. [PMID: 34518845 DOI: 10.1039/d1nr04723j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced van der Waals (vdW) heterostructure devices rely on the incorporation of high quality dielectric materials which need to possess a low defect density as well as being atomically smooth and uniform. In this work we explore the use of talc dielectrics as a potentially clean alternative substrate to hexagonal boron nitride (hBN) for few-layer transition metal dichalcogenide (TMDC) transistors and excitonic TMDC monolayers. We find that talc dielectric transistors show small hysteresis which does not depend strongly on sweep rate and show negligible leakage current for our studied dielectric thicknesses. We also show narrow photoluminescence linewidths down to 10 meV for different TMDC monolayers on talc which highlights that talc is a promising material for future van der Waals devices.
Collapse
Affiliation(s)
- Darren Nutting
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| | - Gabriela A Prando
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
- Physics Department, Federal University of São Carlos, São Carlos, Brazil.
| | - Marion Severijnen
- High Field Magnet Laboratory (HFML - EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Ingrid D Barcelos
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Shi Guo
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| | - Peter C M Christianen
- High Field Magnet Laboratory (HFML - EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Uli Zeitler
- High Field Magnet Laboratory (HFML - EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Yara Galvão Gobato
- Physics Department, Federal University of São Carlos, São Carlos, Brazil.
- High Field Magnet Laboratory (HFML - EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Freddie Withers
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| |
Collapse
|
12
|
Wang Z, Cao Q, Sotthewes K, Hu Y, Shin HS, Eigler S. Interlayer electron modulation in van der Waals heterostructures assembled by stacking monolayer MoS 2 onto monolayer graphene with different electron transfer ability. NANOSCALE 2021; 13:15464-15470. [PMID: 34505854 DOI: 10.1039/d1nr03708k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving tunable optoelectronic properties and clarifying interlayer interactions are key challenges in the development of 2D heterostructures. Herein, we report the feasible modulation of the optoelectronic properties of monolayer MoS2 (1L-MoS2) on three different graphene monolayers with varying ability in extracting electrons. Monolayer oxygen-functionalized graphene (1L-oxo-G, a high amount of oxygen of 60%) with a work function (WF) of 5.67 eV and its lowly oxidized reduction product, namely reduced-oxo-G (1L-r-oxo-G, a low amount of oxygen of 0.1%), with a WF of 5.85 eV serving as hole injection layers significantly enhance the photoluminescence (PL) intensity of MoS2, whereas pristine monolayer graphene (1L-G) with a work function (WF) of 5.02 eV results in PL quenching of MoS2. The enhancement in the PL intensity is due to increase of neutral exciton recombination. Furthermore, 1L-r-oxo-G/MoS2 exhibited a higher increase (5-fold) in PL than 1L-oxo-G/MoS2 (3-fold). Our research can help modulate the carrier concentration and electronic type of 1L-MoS2 and has promising applications in optoelectronic devices.
Collapse
Affiliation(s)
- Zhenping Wang
- Department of Chemistry, Low-Dimensional Carbon and 2D Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Qing Cao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Yalei Hu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Hyeon S Shin
- Department of Chemistry, Low-Dimensional Carbon and 2D Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| |
Collapse
|
13
|
Bastonero L, Cicero G, Palummo M, Re Fiorentin M. Boosted Solar Light Absorbance in PdS 2/PtS 2 Vertical Heterostructures for Ultrathin Photovoltaic Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43615-43621. [PMID: 34468121 PMCID: PMC8447185 DOI: 10.1021/acsami.1c11245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Transition-metal dichalcogenides (TMDs) represent a class of materials whose archetypes, such as MoS2 and WS2, possess exceptional electronic and optical properties and have been massively exploited in optoelectronic applications. The layered structure allows for their exfoliation to two-dimensional samples with atomic thickness (≲ 1 nm), promising for ultrathin, ultralight devices. In this work, by means of state-of-the-art ab initio many-body perturbation theory techniques, we focus on single-layer PdS2 and PtS2 and propose a novel van der Waals heterostructure with outstanding light absorbance, reaching up to 50% in the visible spectrum and yielding a maximum short-circuit current of 7.2 mA/cm2 under solar irradiation. The computed excitonic landscape predicts a partial charge separation between the two layers and the momentum-forbidden lowest-energy state increases the carrier diffusion length. Our results show that the employment of vertical heterostructures with less conventional TMDs, such as PdS2/PtS2, can greatly boost light absorbance and favor the development of more efficient, atomic-thin photovoltaic devices.
Collapse
Affiliation(s)
- Lorenzo Bastonero
- U
Bremen Excellence Chair “Materials Design and Discovery”
and Hybrid Materials Interfaces Group, Bremen Center for Computational
Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
- Dipartimento
di Fisica, Università Degli Studi
Torino, Via Giuria 1, 10125 Torino, Italy
| | - Giancarlo Cicero
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Maurizia Palummo
- Dipartimento
di Fisica and INFN, Università di
Roma “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Michele Re Fiorentin
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| |
Collapse
|