1
|
Tanjil MRE, Gupta T, Gole MT, Suero KP, Yin Z, McCleeary DJ, Douglas ORT, Kincanon MM, Rudawski NG, Anderson AB, Murphy CJ, Zhao H, Wang MC. Nanoscale goldbeating: Solid-state transformation of 0D and 1D gold nanoparticles to anisotropic 2D morphologies. PNAS NEXUS 2023; 2:pgad267. [PMID: 37621403 PMCID: PMC10446819 DOI: 10.1093/pnasnexus/pgad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Goldbeating is the ancient craft of thinning bulk gold (Au) into gossamer leaves. Pioneered by ancient Egyptian craftsmen, modern mechanized iterations of this technique can fabricate sheets as thin as ∼100 nm. We take inspiration from this millennia-old craft and adapt it to the nanoscale regime, using colloidally synthesized 0D/1D Au nanoparticles (AuNPs) as highly ductile and malleable nanoscopic Au ingots and subjecting them to solid-state, uniaxial compression. The applied stress induces anisotropic morphological transformation of AuNPs into 2D leaf form and elucidates insights into metal nanocrystal deformation at the extreme length scales. The induced 2D morphology is found to be dependent on the precursor 0D/1D NP morphology, size (0D nanosphere diameter and 1D nanorod diameter and length), and their on-substrate arrangement (e.g., interparticle separation and packing order) prior to compression. Overall, this versatile and generalizable solid-state compression technique enables new pathways to synthesize and investigate the anisotropic morphological transformation of arbitrary NPs and their resultant emergent phenomena.
Collapse
Affiliation(s)
- Md Rubayat-E Tanjil
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Tanuj Gupta
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
| | - Matthew T Gole
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Keegan P Suero
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zhewen Yin
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Donald J McCleeary
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Ossie R T Douglas
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Maegen M Kincanon
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas G Rudawski
- Herbert Wertheim College of Engineering Research Service Centers, University of Florida, Gainesville, FL 32611, USA
| | - Alissa B Anderson
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huijuan Zhao
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
| | - Michael Cai Wang
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Valencia FJ, Aurora V, Ramírez M, Ruestes CJ, Prada A, Varas A, Rogan J. Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation. NANOMATERIALS 2022; 12:nano12122000. [PMID: 35745339 PMCID: PMC9231280 DOI: 10.3390/nano12122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
In this contribution, we present a study of the mechanical properties of porous nanoshells measured with a nanoindentation technique. Porous nanoshells with hollow designs can present attractive mechanical properties, as observed in hollow nanoshells, but coupled with the unique mechanical behavior of porous materials. Porous nanoshells display mechanical properties that are dependent on shell porosity. Our results show that, under smaller porosity values, deformation is closely related to the one observed for polycrystalline and single-crystalline nanoshells involving dislocation activity. When porosity in the nanoparticle is increased, plastic deformation was mediated by grain boundary sliding instead of dislocation activity. Additionally, porosity suppresses dislocation activity and decreases nanoparticle strength, but allows for significant strain hardening under strains as high as 0.4. On the other hand, Young’s modulus decreases with the increase in nanoshell porosity, in agreement with the established theories of porous materials. However, we found no quantitative agreement between conventional models applied to obtain the Young’s modulus of porous materials.
Collapse
Affiliation(s)
- Felipe J. Valencia
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile;
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Correspondence:
| | - Viviana Aurora
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - Max Ramírez
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - Carlos J. Ruestes
- Instituto Interdisciplinario de Ciencias Básicas, CONICET-UNCuyo, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
| | - Alejandro Prada
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile;
| | - Alejandro Varas
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| | - José Rogan
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124, Chile; (M.R.); (A.V.); (J.R.)
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile;
| |
Collapse
|