1
|
Highly sensitive Cu-ethylenediamine/PANI composite sensor for NH 3 detection at room temperature. Talanta 2023; 258:124418. [PMID: 36931059 DOI: 10.1016/j.talanta.2023.124418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Ammonia detection is needed in several sectors including environmental monitoring, automobile industry, and in medical diagnosis. Conducting polymers, such as polyaniline (PANI), have been utilized to develop NH3 sensors operating at room temperature. However, the performance of these sensors in terms of sensitivity and selectivity need improvement. Functionalization of conducting PANI with metal nanocomposites have shown improved sensor performance. In this work, we report a highly sensitive copper-based nanocomposite for NH3 detection. The novelty lies in utilization of copper-ethylenediamine (Cu-en) nanocomposite functionalized over PANI for gas sensing. Resistance of the 20 wt% Cu-en with PANI increased 3.8 times upon exposure to 100 ppm of NH3. The nanocomposite sensor detected NH3 concentrations as low as 2 ppm. Further, the sensing mechanism was studied by in-situ IV characteristics and impedance spectroscopy during NH3 exposure. NH3 showed ionic interaction with PANI, and Cu2+. The strong affinity of Cu2+ for the lone pair of NH3 enhanced the sensor response from 0.78 to 3.8 for 100 ppm of NH3 at 20 °C. The sensor response was completely recovered after heating at 75 °C, which indicates reusability of the sensor. The sensor showed selectivity for NH3 over ethanol and H2S. The response was reasonably stable after bending the flexible sensor for 1000 times at a radius of 5 mm.
Collapse
|
2
|
Zhang B, Li C, Li M, Fu C, Tao R, Li H, Luo J. High-Performance Ppb Level NO 2 Gas Sensor Based on Colloidal SnO 2 Quantum Wires/Ti 3C 2T x MXene Composite. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4464. [PMID: 36558316 PMCID: PMC9781335 DOI: 10.3390/nano12244464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen dioxide is one origin of air pollution from fossil fuels with the potential to cause great harm to human health in low concentrations. Therefore, low-cost, low-power-consumption sensors for low-concentration NO2 detection are essential. Herein, heterojunction by SnO2 quantum wires, a traditional metal oxide NO2 sensing material, and Ti3C2Tx MXene, a novel type of 2D layered material, was synthesized using a simple solvothermal method for enhancing gas-sensing performance and reducing operating temperature. The operating temperature was reduced to 80 °C, with a best performance of 27.8 and a fast response and recovery time (11 s and 23 s, respectively). The SnO2 and Ti3C2Tx MXene composite exhibits high speed and low detection limit due to the construction of the heterojunction with high conductive Ti3C2Tx MXene. The selectivity and stability of gas sensors are carried out. This could enable the realization of fast response, high-sensitivity, and selective NO2 sensing under low operating temperatures.
Collapse
Affiliation(s)
- Baohui Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Education Ministry and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chong Li
- Key Laboratory of Optoelectronic Devices and Systems of Education Ministry and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Min Li
- College of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Chen Fu
- Key Laboratory of Optoelectronic Devices and Systems of Education Ministry and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ran Tao
- Key Laboratory of Optoelectronic Devices and Systems of Education Ministry and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Honglang Li
- National Center of Nanoscience and Technology, Beijing 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou 510535, China
- Guangdong Guangnaxin Technology Co., Ltd., Guangzhou 510535, China
| | - Jingting Luo
- Key Laboratory of Optoelectronic Devices and Systems of Education Ministry and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
He C, Yang H, Xi M, Fu L, Huo J, Zhao C. Efficient electrocatalytic reduction of NO to ammonia on BC 3 nanosheets. ENVIRONMENTAL RESEARCH 2022; 212:113479. [PMID: 35588777 DOI: 10.1016/j.envres.2022.113479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Searching for an economical and highly efficient electrocatalytic reduction catalyst for ammonia synthesis under controllable conditions is a very attractive and challenging subject in chemistry. In this study, we systematically studied the electrocatalytic performance of BC3 nanosheets as potential NO reduction reaction (NORR) electrocatalysts using density functional theory (DFT) calculations. It was found that BC3 two-dimensional (2D) materials exhibit excellent catalytic activity with a very low limiting potential of -0.29/-0.11 V along three reaction paths. The total reaction is NO (g)+5H++5e-→NH3(g)+ H2O. The density of states of adsorbed NO, NH3, and the corresponding crystal orbital hamiltonian population (COHP) analysis revealed the mechanism of NO being activated and the reasons for NH3 adsorption/desorption on the surface of BC3. The reaction path, limiting potential, and Gibbs free energy calculations of BC3 catalyzed NO to ammonia synthesis revealed that for path 1, the potential-determining step is *NO+H++e-→*NOH, and for path 2/3 the potential-determining step is *NO+(H++e-)→*HNO. Calculation of the thermodynamic energy barriers for NO dissociation at the BC3 surface and NO hydrogenation reveals that NO is more likely to be hydrogenated rather than dissociated. The influences of the proton-electron hydrogenation site on the process of ammonia synthesis in the key reduction step were analyzed by Bader charge analysis and charge density, it is pointed out that the electronic structure and affects the reaction process can be controlled by hydrogenation at different sites of intermediates. These results pave the way for using nitrogen oxides not just nitrogen as raw materials for ammonia synthesis with 2D materials.
Collapse
Affiliation(s)
- Chaozheng He
- Institute of Environment and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Houyong Yang
- Institute of Environment and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Menghui Xi
- Institute of Environment and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Ling Fu
- College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui, 741001, China.
| | - Jinrong Huo
- School of Sciences, Xi'an Technological University, Xi'an, Shaanxi, 710021, China
| | - Chenxu Zhao
- Institute of Environment and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China; Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China
| |
Collapse
|
4
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
5
|
One-Dimensional Nanomaterials in Resistive Gas Sensor: From Material Design to Application. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With a series of widespread applications, resistive gas sensors are considered to be promising candidates for gas detection, benefiting from their small size, ease-of-fabrication, low power consumption and outstanding maintenance properties. One-dimensional (1-D) nanomaterials, which have large specific surface areas, abundant exposed active sites and high length-to-diameter ratios, enable fast charge transfers and gas-sensitive reactions. They can also significantly enhance the sensitivity and response speed of resistive gas sensors. The features and sensing mechanism of current resistive gas sensors and the potential advantages of 1-D nanomaterials in resistive gas sensors are firstly reviewed. This review systematically summarizes the design and optimization strategies of 1-D nanomaterials for high-performance resistive gas sensors, including doping, heterostructures and composites. Based on the monitoring requirements of various characteristic gases, the available applications of this type of gas sensors are also classified and reviewed in the three categories of environment, safety and health. The direction and priorities for the future development of resistive gas sensors are laid out.
Collapse
|
6
|
Wang T, Wang Y, Zheng S, Sun Q, Wu R, Hao J. Design of hierarchical SnSe 2 for efficient detection of trace NO 2 at room temperature. CrystEngComm 2021. [DOI: 10.1039/d1ce00804h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosheet-assembled hierarchical SnSe2 could serve as a new suitable candidate for high-performance room-temperature NO2 gas sensing.
Collapse
Affiliation(s)
- Tingting Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - You Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shengliang Zheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Quan Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruozhen Wu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Meng F, Li X, Yuan Z, Lei Y, Qi T, Li J. Ppb-Level Xylene Gas Sensors Based on Co 3O 4 Nanoparticle-Coated Reduced Graphene Oxide(rGO) Nanosheets Operating at Low Temperature. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2021; 70:1-10. [PMID: 0 DOI: 10.1109/tim.2021.3097858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|