1
|
Zhang X, Yang P. Tungsten Oxide/g-C 3N 4 Heterostructures: Composition, Structure, and Photocatalytic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7191-7211. [PMID: 40079178 DOI: 10.1021/acs.langmuir.4c05287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The construction of heterostructures promotes extending the light adsorption range of graphitic carbon nitride (g-C3N4) materials, improving the photogenerated charge carrier separation/transfer efficiency for attaining much enhanced performances. Because defective tungsten oxide (WOx) materials possess rich composition/morphology and an extended light response in the near-infrared region, WOx is a quite popular nanocomponent for modifying g-C3N4, forming heterostructures that can be used for various photocatalytic applications involving water splitting, CO2 reduction, NOx removal, H2O2 generation, and related chemical to fuel conversion reactions. In this review, important aspects of WOx/g-C3N4 heterostructure photocatalysts are reviewed to provide paradigms for composition adjustment, structural design, and photocatalytic applications of these materials. The WOx growth control in amorphous and crystalline g-C3N4, adjustment on heterostructure types (e.g., type II and Z-scheme), and the catalytic performances of the composite system are also discussed in detail. Moreover, the effects of synthetic methodologies and preparation parameters on the formation of two-dimensional layered heterostructures are discussed to provide inspiration for the construction of state-of-the-art WOx/g-C3N4 heterostructures that can be utilized for photoredox reactions. The challenges and prospects of the heterostructure formation and the photocatalytic applications of the heterostructures in future research are also summarized.
Collapse
Affiliation(s)
- Xiao Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
2
|
Guo RT, Zhang ZR, Xia C, Li CF, Pan WG. Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO 2 to CH 4. NANOSCALE 2023; 15:8548-8577. [PMID: 37128998 DOI: 10.1039/d3nr00242j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photocatalytic system driven by solar light is one of the promising strategies for converting CO2 into valuable energy. The reduction of CO2 to CH4 is widely studied since CH4 has a high energy density as the main component of nonrenewable natural gas. Therefore, it is necessary to develop semiconductor materials with high photocatalytic activity and CH4 selectivity. Graphitic carbon nitride (g-C3N4/CN) has attracted widespread attention for photocatalytic CO2 reduction due to its excellent redox ability and visible light response. A hybrid system constructed by loading cocatalysts on g-C3N4 can significantly improve the yield of target products, and serve as a general platform to explore the mechanism of the CO2 reduction reaction. Herein, we briefly introduce the theory of selective CO2 photoreduction and the basic properties of cocatalysts. Then, several typical configurations and modification strategies of cocatalyst/CN systems for promoting CH4 selective production are presented in detail. In particular, we systematically summarize the application of cocatalyst/CN composite photocatalysts in the selective reduction of CO2 to methane, according to the classification of cocatalysts (monometal, bimetal, metal-based compound, and nanocarbon materials). Finally, the challenges and perspectives for developing cocatalyst/g-C3N4 systems with high CH4 selectivity are presented to guide the rational design of catalysts with high performance in the future.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| |
Collapse
|
3
|
In situ self-assembled preparation of mesoporous Ag/TiO2-MCM-41@LGCN with excellent applications of photocatalysis-adsorption. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Li H, Luo X, Long Z, Huang G, Zhu L. Plasmonic Ag Nanoparticle-Loaded n-p Bi 2O 2CO 3/α-Bi 2O 3 Heterojunction Microtubes with Enhanced Visible-Light-Driven Photocatalytic Activity. NANOMATERIALS 2022; 12:nano12091608. [PMID: 35564315 PMCID: PMC9103671 DOI: 10.3390/nano12091608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023]
Abstract
In this study, n-p Bi2O2CO3/α-Bi2O3 heterojunction microtubes were prepared via a one-step solvothermal route in an H2O-ethylenediamine mixed solvent for the first time. Then, Ag nanoparticles were loaded onto the microtubes using a photo-deposition process. It was found that a Bi2O2CO3/α-Bi2O3 heterostructure was formed as a result of the in situ carbonatization of α-Bi2O3microtubes on the surface. The photocatalytic activities of α-Bi2O3 microtubes, Bi2O2CO3/α-Bi2O3 microtubes, and Ag nanoparticle-loaded Bi2O2CO3/α-Bi2O3 microtubes were evaluated based on their degradation of methyl orange under visible-light irradiation (λ > 420 nm). The results indicated that Bi2O2CO3/α-Bi2O3 with a Bi2O2CO3 mass fraction of 6.1% exhibited higher photocatalytic activity than α-Bi2O3. Loading the microtubes with Ag nanoparticles significantly improved the photocatalytic activity of Bi2O2CO3/α-Bi2O3. This should be ascribed to the internal static electric field built at the heterojunction interface of Bi2O2CO3 and α-Bi2O3 resulting in superior electron conductivity due to the Ag nanoparticles; additionally, the heterojunction at the interfaces between two semiconductors and Ag nanoparticles and the local electromagnetic field induced by the surface plasmon resonance effect of Ag nanoparticles effectively facilitate the photoinduced charge carrier transfer and separation of α-Bi2O3. Furthermore, loading of Ag nanoparticles leads to the formation of new reactive sites, and a new reactive species ·O2− for photocatalysis, compared with Bi2O2CO3/α-Bi2O3.
Collapse
Affiliation(s)
- Haibin Li
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China; (H.L.); (X.L.); (Z.L.); (G.H.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Xiang Luo
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China; (H.L.); (X.L.); (Z.L.); (G.H.)
| | - Ziwen Long
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China; (H.L.); (X.L.); (Z.L.); (G.H.)
| | - Guoyou Huang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China; (H.L.); (X.L.); (Z.L.); (G.H.)
| | - Ligang Zhu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
- Correspondence:
| |
Collapse
|
5
|
Li X, Li N, Gao Y, Ge L. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63863-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Deng X, Kuang X, Zeng J, Zi B, Ma Y, Yan R, Zhang J, Xiao B, Liu Q. Silver nanoparticles embedded 2D g-C 3N 4nanosheets toward excellent photocatalytic hydrogen evolution under visible light. NANOTECHNOLOGY 2022; 33:175401. [PMID: 34996055 DOI: 10.1088/1361-6528/ac493d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic water splitting is considered to be a feasible method to replace traditional energy. However, most of the catalysts have unsatisfactory performance. In this work, we used a hydrothermal process to grow Ag nanoparticlesin situon g-C3N4nanosheets, and then a high performance catalyst (Ag-g-C3N4) under visible light was obtained. The Ag nanoparticles obtained by this process are amorphous and exhibit excellent catalytic activity. At the same time, the local plasmon resonance effect of Ag can effectively enhance the absorption intensity of visible light by the catalyst. The hydrogen production rate promote to 1035μmol g-1h-1after loaded 0.6 wt% of Ag under the visible light, which was 313 times higher than that of pure g-C3N4(3.3μmol g-1h-1). This hydrogen production rate is higher than most previously reported catalysts which loaded with Ag or Pt. The excellent activity of Ag-g-C3N4is benefited from the Ag nanoparticles and special interaction in each other. Through various analysis and characterization methods, it is shown that the synergy between Ag and g-C3N4can effectively promote the separation of carriers and the transfer of electrons. Our work proves that Ag-g-C3N4is a promising catalyst to make full use of solar energy.
Collapse
Affiliation(s)
- Xiyu Deng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Xinya Kuang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jiyang Zeng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Baoye Zi
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yiwen Ma
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Ruihan Yan
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Bin Xiao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
7
|
Zhao J, Shi R, Zhang X, Wang Z, Zhang T. Photothermal methane coupling into liquid fuels with hydrogen evolution over nanocatalysts based on layered double hydroxide (LDH). NANOTECHNOLOGY 2022; 33:185401. [PMID: 35042196 DOI: 10.1088/1361-6528/ac4c5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The increasing energy and environmental problems have made clean energy-driven catalysis a hot research topic. Methane is an earth-abundant raw material but difficult to be converted by thermochemical processes. It is of great significance to seek novel strategies to convert methane into high-value chemicals. Herein, we synthesize a series of transition metal catalysts based on layered double hydroxide precursors which were used for photothermal methane nonoxidative coupling reactions. The strong photothermal and chemisorption effects of the derived transition metal nanostructures allow the efficient activation of methane molecules. Among them, alumina-supported metallic Ni and NiCo-alloy catalysts show excellent methane nonoxidative coupling activities, achieved hydrogen production rates of 4816.53μmol g-1h-1and 5130.9μmol g-1h-1, accompanied by liquid fuels production rates of 59.2 mg g-1h-1and 63 mg g-1h-1, respectively. The findings, therefore, provide a new strategy for methane nonoxidative coupling driven by light energy at mild conditions.
Collapse
Affiliation(s)
- Jiaqing Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Thermal Management and Energy Utilization of Aircraft, Ministry of Industry and Information Technology, Nanjing 210016, People's Republic of China
| | - Xuerui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Zhong K, Zhu X, Yang J, Mo Z, Qian J, He M, Song Y, Liu J, Chen H, Li H, Xu H. Ultrathin structure of oxygen doped carbon nitride for efficient CO 2photocatalytic reduction. NANOTECHNOLOGY 2021; 33:115404. [PMID: 34768251 DOI: 10.1088/1361-6528/ac3949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic conversion of carbon dioxide into fuels and valuable chemicals is a promising method for carbon neutralization and solving environmental problems. Through a simple thermal-oxidative exfoliation method, the O element was doped while exfoliated bulk g-C3N4into ultrathin structure g-C3N4. Benefitting from the ultrathin structure of g-C3N4, the larger surface area and shorter electrons migration distance effectively improve the CO2reduction efficiency. In addition, density functional thory computation proves that O element doping introduces new impurity energy levels, which making electrons easier to be excited. The prepared photocatalyst reduction of CO2to CO (116μmol g-1h-1) and CH4(47μmol g-1h-1).
Collapse
Affiliation(s)
- Kang Zhong
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xingwang Zhu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jinman Yang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhao Mo
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Junchao Qian
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, People's Republic of China
| | - Minqiang He
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yanhua Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
| | - Jinyuan Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hanxiang Chen
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
9
|
Fei X, Zhang L, Yu J, Zhu B. DFT Study on Regulating the Electronic Structure and CO2 Reduction Reaction in BiOBr/Sulphur-Doped G-C3N4 S-Scheme Heterojunctions. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.698351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Photocatalytic CO2 reduction is a promising method to mitigate the greenhouse effect and energy shortage problem. Development of effective photocatalysts is vital in achieving high photocatalytic activity. Herein, the S-scheme heterojunctions composed by BiOBr and g-C3N4 with or without S doping are thoroughly investigated for CO2 reduction by density functional theory (DFT) calculation. Work function and charge density difference demonstrate the existence of a built-in electric field in the system, which contributes to the separation of photogenerated electron-hole pairs. Enhanced strength of a built-in electric field is revealed by analysis of Bader charge and electric field intensity. The results indicate that S doping can tailor the electronic structures and thus improve the photocatalytic activity. According to the change in absorption coefficient, system doping can also endow the heterojunction with increased visible light absorption. The in-depth investigation indicates that the superior CO2 reduction activity is ascribed to low rate-determining energy. And both of the heterojunctions are inclined to generate CH3OH rather than CH4. Furthermore, S doping can further reduce the energy from 1.23 to 0.44 eV, indicating S doping is predicted to be an efficient photocatalyst for reducing CO2 into CH3OH. Therefore, this paper provides a theoretical basis for designing appropriate catalysts through element doping and heterojunction construction.
Collapse
|