1
|
Zhang Y, Xu T, Jiang W, Yu R, Chen Z. Quantification of Hybrid Topological Spin Textures and Their Nanoscale Fluctuations in Ferrimagnets. NANO LETTERS 2024; 24:2727-2734. [PMID: 38395052 DOI: 10.1021/acs.nanolett.3c04409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Noncolinear spin textures, including chiral stripes and skyrmions, have shown great potential in spintronics. Basic configurations of spin textures are either Bloch or Néel types, and the intermediate hybrid type has rarely been reported. A major challenge in identifying hybrid spin textures is to quantitatively determine the hybrid angle, especially in ferrimagnets with weak net magnetization. Here, we develop an approach to quantify magnetic parameters, including chirality, saturation magnetization, domain wall width, and hybrid angle with sub-5 nm spatial resolution, based on Lorentz four-dimensional scanning transmission electron microscopy (Lorentz 4D-STEM). We find strong nanometer-scale variations in the hybrid angle and domain wall width within structurally and chemically homogeneous FeGd ferrimagnetic films. These variations fluctuate during different magnetization circles, revealing intrinsic local magnetization inhomogeneities. Furthermore, hybrid skyrmions can also be nucleated in FeGd films. These analyses demonstrate that the Lorentz 4D-STEM is a quantitative tool for exploring complex spin textures.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Teng Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li X, Wang Z, Lei Z, Ding W, Shi X, Yan J, Ku J. Magnetic characterization techniques and micromagnetic simulations of magnetic nanostructures: from zero to three dimensions. NANOSCALE 2023. [PMID: 37981862 DOI: 10.1039/d3nr04493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The investigation of the magnetic characteristics of magnetic nanostructures (MNs) in various dimensions is a crucial direction of research in nanomagnetism, with MNs belonging to various dimensions exhibiting magnetic properties related to their geometry. A better understanding of these magnetic properties is required for MN manipulation. The primary tools for researching MNs are magnetic characterisation techniques with great spatial resolution and spin sensitivity. Micromagnetic simulation is another technique that minimises experimental costs, while providing information on the magnetic structure and magnetic behaviour, and has enormous potential for predicting, validating, and extending the magnetic characterisation results. This review first looks at the progress of research into quantitatively characterising the magnetic properties of low-dimensional (including 0D, 1D, and 2D) and 3D MNs in two directions: magnetic characterisation techniques and micromagnetic simulations, with a particular emphasis on the potential for future applications of these techniques. Single magnetic characterization techniques, single micromagnetic simulations, or a mix of both are utilised in these research studies to investigate MNs in a variety of dimensions. How the magnetic characterisation techniques and micromagnetic simulations can be better applied to MNs in various dimensions is then outlined. This discussion has significant application potential for low-dimensional and 3D MNs.
Collapse
Affiliation(s)
- Xin Li
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
- Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou 350116, China
| | - Zhaolian Wang
- Shandong Huate Magnet Technology Co., Ltd, Weifang 261000, China
| | - Zhongyun Lei
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Wei Ding
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Xiao Shi
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Jujian Yan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
| | - Jiangang Ku
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, China.
- Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou 350116, China
| |
Collapse
|
3
|
Ma S, Li G, Li Z, Zhang Y, Lu H, Gao Z, Wu J, Long G, Huang Y. 2D Magnetic Semiconductor Fe 3GeTe 2 with Few and Single Layers with a Greatly Enhanced Intrinsic Exchange Bias by Liquid-Phase Exfoliation. ACS NANO 2022; 16:19439-19450. [PMID: 36288432 DOI: 10.1021/acsnano.2c09143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A 2D van der Waals (vdW) magnet can get rid of the constraints of lattice matching and compatibility and then create a variety of vdW heterostructures, which provides a opportunity for spintronic devices. However, the ability to reliably exfoliate large, high-quality vdW ferromagnetic Fe3GeTe2 (FGT) nanoflakes in scaled-up production is severely limited. Herein, an efficient and stable three-stage sonication-assisted liquid-phase exfoliation was developed for mass preparation of high-structural-integrity few- and single-layer FGT nanoflakes with a greatly enhanced intrinsic exchange bias. The three stages include slicing crystals, weakening interlayer vdW forces, and using ultrasonic cavitation. The highest yield of FGT nanoflakes is 22.3 wt % with single layers accounting for 6%. The size is controllable, and several micrometers, tens of micrometers, and a maximum of 103 μm are available. The 200 mg level output has overcome the limitations of mechanical exfoliation and molecular beam epitaxy in economically amplificated production. An intrinsic exchange bias is observed in the restacked nanoflakes due to the magnetic proximity on the interface of the FGT/natural surface oxide layer. The material reaches 578 Oe (2 K) and 2300 Oe after further oxidation, at least 250% higher than other precisely tailored vdW magnetic heterostructures. In addition, the unusual semiconductivity of the liquid-phase exfoliated FGT nanoflakes is reported. This work skillfully utilizes oxidation to enhance the potential of FGT for large-scale spintronics, optoelectronics, efficient data storage, and various extended applications, and it is beneficial for exfoliating other promising magnetic vdW materials.
Collapse
Affiliation(s)
- Suping Ma
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin300350, People's Republic of China
| | - Guanghao Li
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin300350, People's Republic of China
| | - Zhuo Li
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin300350, People's Republic of China
| | - Yawen Zhang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin300350, People's Republic of China
| | - Haolin Lu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin300350, People's Republic of China
| | - Zhansheng Gao
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin300350, People's Republic of China
| | - Jinxiong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100871, People's Republic of China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin300350, People's Republic of China
| | - Yi Huang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin300350, People's Republic of China
| |
Collapse
|
4
|
Seki T, Khare K, Murakami YO, Toyama S, Sánchez-Santolino G, Sasaki H, Findlay SD, Petersen TC, Ikuhara Y, Shibata N. Linear imaging theory for differential phase contrast and other phase imaging modes in scanning transmission electron microscopy. Ultramicroscopy 2022; 240:113580. [DOI: 10.1016/j.ultramic.2022.113580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
|