1
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
2
|
Schumann M, Doherty C. Bridging Gaps in Wearable Technology for Exercise and Health Professionals: A Brief Review. Int J Sports Med 2024. [PMID: 39079705 DOI: 10.1055/a-2376-6332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The proliferation of wearable devices, especially over the past decade, has been remarkable. Wearable technology is used not only by competitive and recreational athletes but is also becoming an integral part of healthcare and public health settings. However, despite the technological advancements and improved algorithms offering rich opportunities, wearables also face several obstacles. This review aims to highlight these obstacles, including the prerequisites for harnessing wearables to improve performance and health, the need for data accuracy and reproducibility, user engagement and adherence, ethical considerations in data harvesting, and potential future research directions. Researchers, healthcare professionals, coaches, and users should be cognizant of these challenges to unlock the full potential of wearables for public health research, disease surveillance, outbreak prediction, and other important applications. By addressing these challenges, the impact of wearable technology can be significantly enhanced, leading to more precise and personalized health interventions, improved athletic performance, and more robust public health strategies. This paper underscores the transformative potential of wearables and their role in advancing the future of exercise prescription, sports medicine and health.
Collapse
Affiliation(s)
- Moritz Schumann
- Department of Sports Medicine and Exercise Therapy, Chemnitz University of Technology, Chemnitz, Germany
| | - Cailbhe Doherty
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Ireland
- Insight SFI Research Centre for Data Analytics, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Cierpiak K, Wityk P, Kosowska M, Sokołowski P, Talaśka T, Gierowski J, Markuszewski MJ, Szczerska M. C-reactive protein (CRP) evaluation in human urine using optical sensor supported by machine learning. Sci Rep 2024; 14:18854. [PMID: 39143107 PMCID: PMC11324656 DOI: 10.1038/s41598-024-67821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The rapid and sensitive indicator of inflammation in the human body is C-Reactive Protein (CRP). Determination of CRP level is important in medical diagnostics because, depending on that factor, it may indicate, e.g., the occurrence of inflammation of various origins, oncological, cardiovascular, bacterial or viral events. In this study, we describe an interferometric sensor able to detect the CRP level for distinguishing between no-inflammation and inflammation states. The measurement head was made of a single mode optical fiber with a microsphere structure created at the tip. Its surface has been biofunctionalized for specific CRP bonding. Standardized CRP solutions were measured in the range of 1.9 µg/L to 333 mg/L and classified in the initial phase of the study. The real samples obtained from hospitalized patients with diagnosed Urinary Tract Infection or Urosepsis were then investigated. 27 machine learning classifiers were tested for labeling the phantom samples as normal or high CRP levels. With the use of the ExtraTreesClassifier we obtained an accuracy of 95% for the validation dataset. The results of real samples classification showed up to 100% accuracy for the validation dataset using XGB classifier.
Collapse
Affiliation(s)
- Kacper Cierpiak
- Department of Metrology and Optoelectronics, Faculty of Informatics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Paweł Wityk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Monika Kosowska
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Patryk Sokołowski
- Department of Metrology and Optoelectronics, Faculty of Informatics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Tomasz Talaśka
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Jakub Gierowski
- Kayon sp. z o.o., Romualda Traugutta 115c, 80-226, Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Małgorzata Szczerska
- Department of Metrology and Optoelectronics, Faculty of Informatics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
4
|
Ajori S, Sadeghi F. Design of High-Frequency Carbon Nanotube-Carbon Nanotorus Oscillators for Energy Harvesting: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4811-4823. [PMID: 38381889 DOI: 10.1021/acs.langmuir.3c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The objective of this study is to examine the feasibility of using carbon-based nanostructures as nano-oscillators for future nanoelectromechanical applications such as energy harvesting devices and vibration sensing. The proposed nano-oscillator is comprised of a carbon nanotube (CNT) oscillating through a fixed carbon nanotorus molecule. For the first time in the literature, molecular dynamics (MD) simulations in conjunction with the Tersoff-Brenner (TB) and 6-12 Lennard-Jones (LJ) potential functions are adopted to determine the molecular interactions of the introduced nanodevice. To simulate the oscillatory behavior, two different schemes, namely, rigid and flexible, are considered. A detailed parametric study is performed to investigate the effects of rigidity, flexibility, and size of nanostructures as well as initial velocity on the force distribution and time histories of displacement and velocity of the core. Numerical results reveal that unlike the rigid oscillators, the flexible oscillators damp out within a few cycles. It is shown that the escape velocity of the flexible scheme is ∼6 times greater than that of the rigid scheme. The operating frequency and the generated power of rigid and flexible schemes under different system parameters are also calculated and compared. It is demonstrated that with increasing the ratio of nanotube-to-nanotorus diameter, the operating frequencies of both schemes decrease, while the generated powers do not behave monotonically. For a determined system parameter, it is observed that the flexible scheme provides higher operating frequencies compared to the rigid one. Moreover, considering that the initial velocity of the system is identical to the escape velocity, the generated power of the flexible scheme is calculated to be ∼14 times greater than that of the rigid scheme.
Collapse
Affiliation(s)
- S Ajori
- Department of Mechanical Engineering, University of Maragheh, Maragheh, East Azerbaijan Province 83111-55181, Iran
| | - F Sadeghi
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabili 56318-44133, Iran
| |
Collapse
|
5
|
Amani AM, Tayebi L, Abbasi M, Vaez A, Kamyab H, Chelliapan S, Vafa E. The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications. ACS OMEGA 2024; 9:3123-3142. [PMID: 38284011 PMCID: PMC10809375 DOI: 10.1021/acsomega.3c06590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
As a result of the transformation of inflexible electronic structures into flexible and stretchy devices, wearable electronics now provide great advantages in a variety of fields, including mobile healthcare sensing and monitoring, human-machine interfaces, portable energy storage and harvesting, and more. Because of their enriched surface functionalities, large surface area, and high electrical conductivity, transition metal nitrides and carbides (also known as MXenes) have recently come to be extensively considered as a group of functioning two-dimensional nanomaterials as well as exceptional fundamental elements for forming flexible electronics devices. This Review discusses the most recent advancements that have been made in the field of MXene-enabled flexible electronics for wearable electronics. The emphasis is placed on extensively established nonstructural features in order to highlight some MXene-enabled electrical devices that were constructed on a nanometric scale. These attributes include devices configured in three dimensions: printed materials, bioinspired structures, and textile and planar substrates. In addition, sample applications in electromagnetic interference (EMI) shielding, energy, healthcare, and humanoid control of machinery illustrate the exceptional development of these nanodevices. The increasing potential of MXene nanoparticles as a new area in next-generation wearable electronic technologies is projected in this Review. The design challenges associated with these electronic devices are also discussed, and possible solutions are presented.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Milad Abbasi
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| | - Ahmad Vaez
- Department
of Tissue Engineering and Applied Cell Sciences, School of Advanced
Medical Sciences and Technologies, Shiraz
University of Medical Sciences, Shiraz 71348, Iran
| | - Hesam Kamyab
- Malaysia-Japan
International Institute of Technology, Universiti
Teknologi Malaysia, Jalan
Sultan Yahya Petra,54100 Kuala Lumpur, Malaysia
- Facultad
de Arquitectura y Urbanismo, Universidad
UTE, Calle Rumipamba
S/N y Bourgeois, Quito 170147, Ecuador
- Department
of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Shreeshivadasan Chelliapan
- Engineering
Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Ehsan Vafa
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| |
Collapse
|
6
|
Riul A, de Barros A, Gaál G, Braunger ML, Martinez Jimenez MJ, Avila-Avendano C, Rodrigues V, de Andrade MJ, Quevedo-Lopez M, Alvarez F, Baughman RH. Self-Healing E-tongue. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55073-55081. [PMID: 37967325 DOI: 10.1021/acsami.3c11590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Self-healing materials inspire the next generation of multifunctional wearables and Internet of Things appliances. They expand the realm of thin film fabrication, enabling seamless conformational coverage irrespective of the shape complexity and surface geometry for electronic skins, smart textiles, soft robotics, and energy storage devices. Within this context, the layer-by-layer (LbL) technique is versatile for homogeneously dispersing materials onto various matrices. Moreover, it provides molecular level thickness control and coverage on practically any surface, with poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA) being the most used materials primarily employed in self-healing LbL structures operating at room temperature. However, achieving thin film composites displaying controlled conductivity and healing ability is still challenging under ambient conditions. Here, PEI and PAA are mixed with conductive fillers (gold nanorods, poly(3,4-ethylene dioxythiophene): polystyrenesulfonate (PEDOT:PSS), reduced graphene oxides, and multiwalled carbon nanotubes) in distinct LbL film architectures. Electrical (AC and DC), optical (Raman spectroscopy), and mechanical (nanoindentation) measurements are used for characterizing composite structures and properties. A delicate balance among electrical, mechanical, and structural characteristics must be accomplished for a controlled design of conductive self-healing composites. As a proof-of-concept, four LbL composites were chosen as sensing units in the first reported self-healing e-tongue. The sensor can easily distinguish basic tastes at low molar concentrations and differentiate trace levels of glucose in artificial sweat. The formed nanostructures enable smart coverages that have unique features for solving current technological challenges.
Collapse
Affiliation(s)
- Antonio Riul
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Anerise de Barros
- Universidade Estadual de Campinas, Instituto de Química, Campinas, SP 13083-970, Brazil
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Gabriel Gaál
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Maria L Braunger
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Mawin J Martinez Jimenez
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Carlos Avila-Avendano
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Varlei Rodrigues
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Mônica Jung de Andrade
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Manuel Quevedo-Lopez
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Fernando Alvarez
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Ray H Baughman
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
7
|
Sharma SK, Grewal HS. Tribological Behavior of Bioinspired Surfaces. Biomimetics (Basel) 2023; 8:biomimetics8010062. [PMID: 36810393 PMCID: PMC9944884 DOI: 10.3390/biomimetics8010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Energy losses due to various tribological phenomena pose a significant challenge to sustainable development. These energy losses also contribute toward increased emissions of greenhouse gases. Various attempts have been made to reduce energy consumption through the use of various surface engineering solutions. The bioinspired surfaces can provide a sustainable solution to address these tribological challenges by minimizing friction and wear. The current study majorly focuses on the recent advancements in the tribological behavior of bioinspired surfaces and bio-inspired materials. The miniaturization of technological devices has increased the need to understand micro- and nano-scale tribological behavior, which could significantly reduce energy wastage and material degradation. Integrating advanced research methods is crucial in developing new aspects of structures and characteristics of biological materials. Depending upon the interaction of the species with the surrounding, the present study is divided into segments depicting the tribological behavior of the biological surfaces inspired by animals and plants. The mimicking of bio-inspired surfaces resulted in significant noise, friction, and drag reduction, promoting the development of anti-wear and anti-adhesion surfaces. Along with the reduction in friction through the bioinspired surface, a few studies providing evidence for the enhancement in the frictional properties were also depicted.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Harpreet Singh Grewal
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| |
Collapse
|
8
|
Luo X, Xie D, Su J, Hu J. Inflammatory Genes Associated with Pristine Multi-Walled Carbon Nanotubes-Induced Toxicity in Ocular Cells. Int J Nanomedicine 2023; 18:2465-2484. [PMID: 37192896 PMCID: PMC10183194 DOI: 10.2147/ijn.s394694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Background The wide application of multi-walled carbon nanotubes (MWCNTs) in various fields has raised enormous concerns regarding their safety for humans. However, studies on the toxicity of MWCNTs to the eye are rare and potential molecular mechanisms are completely lacking. This study was to evaluate the adverse effects and toxic mechanisms of MWCNTs on human ocular cells. Methods Human retinal pigment epithelial cells (ARPE-19) were treated with pristine MWCNTs (7-11 nm) (0, 25, 50, 100 or 200 μg/mL) for 24 hours. MWCNTs uptake into ARPE-19 cells was examined using transmission electron microscopy (TEM). The cytotoxicity was evaluated by CCK-8 assay. The death cells were detected by Annexin V-FITC/PI assay. RNA profiles in MWCNT-exposed and non-exposed cells (n = 3) were analyzed using RNA-sequencing. The differentially expressed genes (DEGs) were identified through the DESeq2 method and hub of which were filtered by weighted gene co-expression, protein-protein interaction (PPI) and lncRNA-mRNA co-expression network analyses. The mRNA and protein expression levels of crucial genes were verified using quantitative polymerase chain reaction (qPCR), colorimetric analysis, ELISA and Western blotting. The toxicity and mechanisms of MWCNTs were also validated in human corneal epithelial cells (HCE-T). Results TEM analysis indicated the internalization of MWCNTs into ARPE-19 cells to cause cell damage. Compared with untreated ARPE-19 cells, those exposed to MWCNTs exhibited significantly decreased cell viabilities in a dose-dependent manner. The percentages of apoptotic (early, Annexin V positive; late, Annexin V and PI positive) and necrotic (PI positive) cells were significantly increased after exposure to IC50 concentration (100 μg/mL). A total of 703 genes were identified as DEGs; 254 and 56 of them were, respectively, included in darkorange2 and brown1 modules that were significantly associated with MWCNT exposure. Inflammation-related genes (including CXCL8, MMP1, CASP3, FOS, CXCL2 and IL11) were screened as hub genes by calculating the topological characteristics of genes in the PPI network. Two dysregulated long non-coding RNAs (LUCAT1 and SCAT8) were shown to regulate these inflammation-related genes in the co-expression network. The mRNA levels of all eight genes were confirmed to be upregulated, while caspase-3 activity and the release of CXCL8, MMP1, CXCL2, IL11 and FOS proteins were demonstrated to be increased in MWCNT-treated ARPE-19 cells. MWCNTs exposure also can induce cytotoxicity and increase the caspase-3 activity and the expression of LUCAT1, MMP1, CXCL2, and IL11 mRNA and protein in HCE-T cells. Conclusion Our study provides promising biomarkers for monitoring MWCNT-induced eye disorders and targets for developing preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
- Correspondence: Xiaogang Luo; Jianchen Hu, Tel +86-0512-67162531, Email ;
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jing Su
- Shanghai Institute of Spacecraft Equipment, Shanghai, 200240, People’s Republic of China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
9
|
Luo X, Xie D, Wu T, Xu W, Meng Q, Cao K, Hu J. Evaluation of the protective roles of alpha-lipoic acid supplementation on nanomaterial-induced toxicity: A meta-analysis of in vitro and in vivo studies. Front Nutr 2022; 9:991524. [PMID: 36147302 PMCID: PMC9486203 DOI: 10.3389/fnut.2022.991524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 01/02/2023] Open
Abstract
Extensive exposure to nanomaterials causes oxidative stress and inflammation in various organs and leads to an increased risk of adverse health outcomes; therefore, how to prevent the toxic effects are of great concern to human. Alpha-lipoic acid (ALA) has anti-oxidant and anti-inflammatory activities, suggesting it may be effective to prevent nanomaterial-induced toxicity. However, the results obtained in individual studies remained controversial. We aimed to comprehensively evaluate the effects of ALA supplementation on nanomaterial-induced toxicity by performing a meta-analysis. Databases of PubMed, EMBASE, and Cochrane Library were searched up to May 2022. STATA 15.0 software was used for statistical analysis. Twelve studies were included. Meta-analysis of eight in vivo studies showed ALA supplementation could exert significant effects on nanomaterial-induced oxidative stress (by reducing MDA, ROS and increasing GSH, CAT, GPx, and SOD), inflammation (by downregulating NO, IgG, TNF-α, IL-6, and CRP), apoptosis (by activation of pro-apoptotic caspase-3), DNA damage (by a reduction in the tail length) and organ damage (by a decrease in the liver biomarker ALT and increases in brain neuron biomarker AChE and heart biomarker CPK). Pooled analysis of four in vitro studies indicated ALA intervention increased cell viability, decreased ROS levels, inhibited cell apoptosis and chelated metal ions. Subgroup analyses revealed changing the levels of GSH, IL-6, and metal ions were the main protective mechanisms of ALA supplementation because they were not changed by any subgroup factors. In conclusion, ALA supplementation may represent a potential strategy for the prevention of the toxicity induced by nanomaterials.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- *Correspondence: Xiaogang Luo,
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd, Shanghai, China
| | - Wei Xu
- Shanghai Nutri-woods Bio-Technology Co., Ltd, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Daily Chemical Co., Ltd, Shanghai, China
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, Shanghai, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Jianchen Hu,
| |
Collapse
|
10
|
Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rapidly aging society and increased concern for personal cardiovascular health, novel, flexible electrodes suitable for electrocardiogram (ECG) signal monitoring are in demand. Based on the excellent electrical and mechanical properties of graphene and the rapid development of graphene device fabrication technologies, graphene-based ECG electrodes have recently attracted much attention, and many flexible graphene electrodes with excellent performance have been developed. To understand the current research progress of graphene-based ECG electrodes and help researchers clarify current development conditions and directions, we systematically review the recent advances in graphene-based flexible ECG electrodes. Graphene electrodes are classified as bionic, fabric-based, biodegradable, laser-induced/scribed, modified-graphene, sponge-like, invasive, etc., based on their design concept, structural characteristics, preparation methods, and material properties. Moreover, some categories are further divided into dry or wet electrodes. Then, their performance, including electrode–skin impedance, signal-to-noise ratio, skin compatibility, and stability, is analyzed. Finally, we discuss possible development directions of graphene ECG electrodes and share our views.
Collapse
|
11
|
Guo X, Li J, Wang F, Zhang J, Zhang J, Shi Y, Pan L. Application of conductive polymer hydrogels in flexible electronics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Fanyu Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jia‐Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| |
Collapse
|
12
|
Beasley AE, Abdelouahab MS, Lozi R, Tsompanas MA, Powell AL, Adamatzky A. Mem-fractive properties of mushrooms. BIOINSPIRATION & BIOMIMETICS 2022; 16:066026. [PMID: 34624868 DOI: 10.1088/1748-3190/ac2e0c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Memristors close the loop forI-Vcharacteristics of the traditional, passive, semi-conductor devices. A memristor is a physical realisation of the material implication and thus is a universal logical element. Memristors are getting particular interest in the field of bioelectronics. Electrical properties of living substrates are not binary and there is nearly a continuous transitions from being non-memristive to mem-fractive (exhibiting a combination of passive memory) to ideally memristive. In laboratory experiments we show that living oyster mushroomsPleurotus ostreatusexhibit mem-fractive properties. We offer a piece-wise polynomial approximation of theI-Vbehaviour of the oyster mushrooms. We also report spiking activity, oscillations in conduced current of the oyster mushrooms.
Collapse
Affiliation(s)
- Alexander E Beasley
- Unconventional Computing Laboratory, UWE, Bristol, United Kingdom
- Centre for Engineering Research, University of Hertfordshire, United Kingdom
| | - Mohammed-Salah Abdelouahab
- Laboratory of Mathematics and Their Interactions, University Centre Abdelhafid Boussouf, Mila 43000, Algeria
| | - René Lozi
- Université Côte d'Azur, CNRS, LJAD, Nice, France
| | | | - Anna L Powell
- Unconventional Computing Laboratory, UWE, Bristol, United Kingdom
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, UWE, Bristol, United Kingdom
| |
Collapse
|
13
|
Characteristics of glucose oxidase immobilized on carbon-encapsulated iron nanoparticles decorated with polyethyleneimine. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Biomaterials and Their Biomedical Applications: From Replacement to Regeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9111949] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The history of biomaterials dates back to the mists of time: human beings had always used exogenous materials to facilitate wound healing and try to restore damaged tissues and organs. Nowadays, a wide variety of materials are commercially available and many others are under investigation to both maintain and restore bodily functions. Emerging clinical needs forced the development of new biomaterials, and lately discovered biomaterials allowed for the performing of new clinical applications. The definition of biomaterials as materials specifically conceived for biomedical uses was raised when it was acknowledged that they have to possess a fundamental feature: biocompatibility. At first, biocompatibility was mainly associated with biologically inert substances; around the 1970s, bioactivity was first discovered and the definition of biomaterials was consequently extended. At present, it also includes biologically derived materials and biological tissues. The present work aims at walking across the history of biomaterials, looking towards the scientific literature published on this matter. Finally, some current applications of biomaterials are briefly depicted and their future exploitation is hypothesized.
Collapse
|