Kim HM, Lee HY, Park JH, Lee SK. Fiber Optic Plasmonic Sensors Based on Nanodome Arrays with Nanogaps.
ACS Sens 2022;
7:1451-1457. [PMID:
35522993 DOI:
10.1021/acssensors.2c00154]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a high-performance fiber optic surface plasmon resonance (FO-SPR) sensor using a dome array with nanogaps (DANG) is proposed for label-free real-time detection of biomolecules. A novel and simple method using polymer beads enables high sensitivity by allowing hotspots with nanometer spacing between the Au dome and the surrounding film. The nanodome structure, which comprises a polymer core and a Au shell, induces a localized surface plasmon, expands the sensing area, and extensively enhances the electromagnetic field. The refractive index sensitivity of the FO-SPR sensor with nanostructures, i.e., with nanogaps and nanodomes, was found to be 7.8 times higher than that of the FO-SPR sensor without nanostructures. The proposed sensor achieved a low detection limit of 38 fg/mL while quantifying thyroglobulin antibody-antigen interactions and exhibited excellent selectivity. In addition, it helped detect serum samples with a 103% recovery rate.
Collapse