1
|
He W, Xing Y, Fang P, Han Z, Yu Z, Zhan R, Han J, Guan B, Zhang B, Lv W, Zeng Z. A synapse with low power consumption based on MoTe 2/SnS 2heterostructure. NANOTECHNOLOGY 2024; 35:335703. [PMID: 38759635 DOI: 10.1088/1361-6528/ad4cf4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
The use of two-dimensional materials and van der Waals heterostructures holds great potential for improving the performance of memristors Here, we present SnS2/MoTe2heterostructure synaptic transistors. Benefiting from the ultra-low dark current of the heterojunction, the power consumption of the synapse is only 19pJ per switching under 0.1 V bias, comparable to that of biological synapses. The synaptic device based on the SnS2/MoTe2demonstrates various synaptic functionalities, including short-term plasticity, long-term plasticity, and paired-pulse facilitation. In particular, the synaptic weight of the excitatory postsynaptic current can reach 109.8%. In addition, the controllability of the long-term potentiation and long-term depression are discussed. The dynamic range (Gmax/Gmin) and the symmetricity values of the synaptic devices are approximately 16.22 and 6.37, and the non-linearity is 1.79. Our study provides the possibility for the application of 2D material synaptic devices in the field of low-power information storage.
Collapse
Affiliation(s)
- Wenxin He
- Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Microelectronics, Beijing University of Technology, Beijing 100124, People's Republic of China
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yanhui Xing
- Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Microelectronics, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Peijing Fang
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zisuo Han
- Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Microelectronics, Beijing University of Technology, Beijing 100124, People's Republic of China
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhipeng Yu
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Rongbin Zhan
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jun Han
- Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Microelectronics, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Baolu Guan
- Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Microelectronics, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Baoshun Zhang
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Weiming Lv
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhongming Zeng
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
2
|
Xie W, Zhang Y, Xu L, Xie D, Jiang L, Dong Y, Yuan Y. Degradation of Organic Dyes by the UCNP/h-BN/TiO 2 Ternary Photocatalyst. ACS OMEGA 2023; 8:48662-48672. [PMID: 38162774 PMCID: PMC10753565 DOI: 10.1021/acsomega.3c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 01/03/2024]
Abstract
In this study, upconversion nanoparticles (UCNPs) with a flower-like morphology were prepared using a urea coprecipitation method. A ternary photocatalyst was first prepared using a solvothermal method involving the use of titanium oxide (TiO2), hexagonal boron nitride (h-BN), and UCNPs (Y2O3, Yb3+, and Tm3+) as raw materials. The surface morphology, crystal structure, and functional groups of these materials were then characterized and analyzed through scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectrophotometry, and other techniques. Photocatalytic experiments were also conducted to investigate the effects of different catalyst types, raw material doping ratios, pH values, and catalyst quantities on the photocatalytic degradation of rhodamine B (RhB). The results indicated that doping with h-BN and UCNPs reduced the band gap width of RhB, increased its light absorption rate, and decreased the recombination rate of its photogenerated electrons and holes so that the photocatalytic degradation effect reached 100% within 2 h. After five experimental cycles, the 30% UC-BN-Ti photocatalyst remained highly durable and stable. To investigate the effects of different trapping agents on the degradation of RhB, benzoquinone, isopropanol, and ethylenediaminetetraacetic acid disodium salt were used as free-radical-capturing agents. The results indicated that •O2- was the primary active species in the degradation process. Finally, the pathway and mechanism of the degradation of RhB through ternary composite photocatalysis were identified.
Collapse
Affiliation(s)
- Weijun Xie
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Yue Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Lei Xu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Dan Xie
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Li Jiang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Yanmao Dong
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| |
Collapse
|
3
|
Khan MA, Khan MF, Rehman S, Patil H, Dastgeer G, Ko BM, Eom J. The non-volatile electrostatic doping effect in MoTe 2 field-effect transistors controlled by hexagonal boron nitride and a metal gate. Sci Rep 2022; 12:12085. [PMID: 35840642 PMCID: PMC9287407 DOI: 10.1038/s41598-022-16298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
The electrical and optical properties of transition metal dichalcogenides (TMDs) can be effectively modulated by tuning their Fermi levels. To develop a carrier-selectable optoelectronic device, we investigated intrinsically p-type MoTe2, which can be changed to n-type by charging a hexagonal boron nitride (h-BN) substrate through the application of a writing voltage using a metal gate under deep ultraviolet light. The n-type part of MoTe2 can be obtained locally using the metal gate pattern, whereas the other parts remain p-type. Furthermore, we can control the transition rate to n-type by applying a different writing voltage (i.e., − 2 to − 10 V), where the n-type characteristics become saturated beyond a certain writing voltage. Thus, MoTe2 was electrostatically doped by a charged h-BN substrate, and it was found that a thicker h-BN substrate was more efficiently photocharged than a thinner one. We also fabricated a p–n diode using a 0.8 nm-thick MoTe2 flake on a 167 nm-thick h-BN substrate, which showed a high rectification ratio of ~ 10−4. Our observations pave the way for expanding the application of TMD-based FETs to diode rectification devices, along with optoelectronic applications.
Collapse
Affiliation(s)
- Muhammad Asghar Khan
- Department of Physics and Astronomy, and Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC), Sejong University, Seoul, 05006, Korea
| | | | - Shania Rehman
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Korea.,Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, Korea
| | - Harshada Patil
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Korea.,Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, Korea
| | - Ghulam Dastgeer
- Department of Physics and Astronomy, and Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC), Sejong University, Seoul, 05006, Korea
| | - Byung Min Ko
- Department of Physics and Astronomy, and Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC), Sejong University, Seoul, 05006, Korea
| | - Jonghwa Eom
- Department of Physics and Astronomy, and Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC), Sejong University, Seoul, 05006, Korea.
| |
Collapse
|