1
|
Pei H, Peng W, Zhang J, Zhao J, Qi J, Yu C, Li J, Wei Y. Surface-enhanced photoluminescence and Raman spectroscopy of single molecule confined in coupled Au bowtie nanoantenna. NANOTECHNOLOGY 2024; 35:155201. [PMID: 38176065 DOI: 10.1088/1361-6528/ad1afd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Optical nanoantennas possess broad applications in the fields of photodetection, environmental science, biosensing and nonlinear optics, owing to their remarkable ability to enhance and confine the optical field at the nanoscale. In this article, we present a theoretical investigation of surface-enhanced photoluminescence spectroscopy for single molecules confined within novel Au bowtie nanoantenna, covering a wavelength range from the visible to near-infrared spectral regions. We employ the finite element method to quantitatively study the optical enhancement properties of the plasmonic field, quantum yield, Raman scattering and fluorescence. Additionally, we systematically examine the contribution of nonlocal dielectric response in the gap mode to the quantum yield, aiming to gain a better understanding of the fluorescence enhancement mechanism. Our results demonstrate that altering the configuration of the nanoantenna has a significant impact on plasmonic sensitivity. The nonlocal dielectric response plays a crucial role in reducing the quantum yield and corresponding fluorescence intensity when the gap distance is less than 3 nm. However, a substantial excitation field can effectively overcome fluorescence quenching and enhance the fluorescence intensity. By optimizing nanoantenna configuration, the maximum enhancement of surface-enhanced Raman can be turned to 9 and 10 magnitude orders in the visible and near-infrared regions, and 3 and 4 magnitude orders for fluorescence enhancement, respectively. The maximum spatial resolutions of 0.8 nm and 1.5 nm for Raman and fluorescence are also achieved, respectively. Our calculated results not only provide theoretical guidance for the design and application of new nanoantennas, but also contribute to expanding the range of surface-enhanced Raman and fluorescence technology from the visible to the near-infrared region.
Collapse
Affiliation(s)
- Huan Pei
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Weifeng Peng
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jiale Zhang
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jiaxin Zhao
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jialu Qi
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Changjian Yu
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jing Li
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Yong Wei
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| |
Collapse
|
2
|
Gritsienko AV, Duleba A, Pugachev MV, Kurochkin NS, Vlasov II, Vitukhnovsky AG, Kuntsevich AY. Photodynamics of Bright Subnanosecond Emission from Pure Single-Photon Sources in Hexagonal Boron Nitride. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4495. [PMID: 36558349 PMCID: PMC9782090 DOI: 10.3390/nano12244495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Bright and stable emitters of single indistinguishable photons are crucial for quantum technologies. The origin of the promising bright emitters recently observed in hexagonal boron nitride (hBN) still remains unclear. This study reports pure single-photon sources in multi-layered hBN at room temperature that demonstrate high emission rates. The quantum emitters are introduced with argon beam treatment and air annealing of mechanically exfoliated hBN flakes with thicknesses of 5-100 nm. Spectral and time-resolved measurements reveal the emitters have more than 1 GHz of excited-to-ground state transition rate. The observed photoswitching between dark and bright states indicates the strong sensitivity of the emitter to the electrostatic environment and the importance of the indirect excitation for the photodynamics.
Collapse
Affiliation(s)
- Alexander V. Gritsienko
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskií Per., 141700 Dolgoprudnyí, Russia
| | - Aliaksandr Duleba
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
| | - Mikhail V. Pugachev
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
| | - Nikita S. Kurochkin
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskií Per., 141700 Dolgoprudnyí, Russia
| | - Igor I. Vlasov
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskií Per., 141700 Dolgoprudnyí, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, 119991 Moscow, Russia
| | - Alexei G. Vitukhnovsky
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskií Per., 141700 Dolgoprudnyí, Russia
| | - Alexandr Yu. Kuntsevich
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Pr., 119991 Moscow, Russia
| |
Collapse
|