1
|
Kohandani R, Saini SS. Engineering Fano resonances in plasmonic metasurfaces for colorimetric sensing and structural colors. NANOTECHNOLOGY 2024; 36:015203. [PMID: 39374618 DOI: 10.1088/1361-6528/ad83d7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/06/2024] [Indexed: 10/09/2024]
Abstract
In this paper, we present the design and fabrication of a plasmonic metasurface based on titanium dioxide (TiO2) nanowire arrays integrated with plasmonic layers. The structure is engineered to produce Fano resonances within the visible spectrum, resulting from the coupling of localized surface plasmon resonances, lattice modes, and nanowire's optical modes. Experimentally, we show that by tuning the geometrical features of the metasurface, such as the length, diameter, and period of the nanowires, a high-quality factor single peak can be achieved in the reflection spectra, resulting in vivid structural colors in bright field. To our knowledge, this is the first demonstration of such vivid colors with nanowire arrays in bright field reflections. When characterized by refractive index fluids around the refractive index of water, the plasmonic metasurface also showed great potential for biochemical colorimetric sensing. The best design demonstrated a bulk sensitivity of 183 nm/RIU with high Q resonance features and linear changes in color values using image processing.
Collapse
Affiliation(s)
- Reza Kohandani
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - Simarjeet Singh Saini
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Yuan L, Zhao Y, Toma A, Aglieri V, Gerislioglu B, Yuan Y, Lou M, Ogundare A, Alabastri A, Nordlander P, Halas NJ. A Quasi-Bound States in the Continuum Dielectric Metasurface-Based Antenna-Reactor Photocatalyst. NANO LETTERS 2024; 24:172-179. [PMID: 38156648 DOI: 10.1021/acs.nanolett.3c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Metasurfaces are a class of two-dimensional artificial resonators, creating new opportunities for strong light-matter interactions. One type of nonradiative optical metasurface that enables substantial light concentration is based on quasi-Bound States in the Continuum (quasi-BIC). Here we report the design and fabrication of a quasi-BIC dielectric metasurface that serves as an optical frequency antenna for photocatalysis. By depositing Ni nanoparticle reactors onto the metasurface, we create an antenna-reactor photocatalyst, where the virtually lossless metasurface funnels light to drive a chemical reaction. This quasi-BIC-Ni antenna-reactor drives H2 dissociation under resonant illumination, showing strong polarization, wavelength, and optical power dependencies. Both E-field-induced electronic and photothermal heating effects drive the reaction, supported by load-dependent reactivity studies and our theoretical model. This study unlocks new opportunities for photocatalysis that employ dielectric metasurfaces for light harvesting in an antenna-reactor format.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Yage Zhao
- Department of Physics&Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Andrea Toma
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Burak Gerislioglu
- Department of Physics&Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Yigao Yuan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Minghe Lou
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Adebola Ogundare
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Physics&Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics&Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Liu Z, Du J, Chi Z, Cong H, Wang B. An all-dielectric metasurface based on Fano resonance with tunable dual-peak insensitive polarization for high-performance refractive index sensing. Phys Chem Chem Phys 2023; 25:28094-28103. [PMID: 37818608 DOI: 10.1039/d3cp03339b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
A symmetric all-dielectric metasurface based on silicon and GaAs is proposed and numerically studied. In the mid-infrared region, two Fano resonant peaks with a reflectance exceeding 90% are observed. By altering the geometric parameters of the metasurface, the wavelength location and quality factor (Q-factor) of the resonant peaks can be tuned. The highest Q-factors can be 9609.67 and 3476.33, respectively. The proposed metasurface structure for optical refractive index sensing shows high performance and is insensitive to the plane wave's polarization state. In the refractive index range of 1.00 to 1.10, the highest sensitivity and figure of merit (FoM) are 1901.34 nm RIU-1 and 2492.04 RIU-1, respectively. The highest sensitivity is 2248.57 nm RIU-1 and FoM is 977.64 RIU-1 in the refractive index range of 1.30 to 1.40. These research results will help improve and innovate related sensing technologies and devices.
Collapse
Affiliation(s)
- Zeqian Liu
- College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, 266071, China.
| | - Jiansen Du
- Qingdao International Travel Healthcare Center, Qingdao Customs District, Qingdao, 266071, China
| | - Zongtao Chi
- College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Material Science and Engineering, Shandong University of Technology, Zibo, 255090, China
| | - Bin Wang
- College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Wang C, Sun Y, Yu Z, Liu X, Chen B, Zhang Y, Zheng Z. Dual-Functional Tunable Metasurface for Meta-Axicon with a Variable Depth of Focus and Continuous-Zoom Metalens. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2530. [PMID: 37764559 PMCID: PMC10534771 DOI: 10.3390/nano13182530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Optical metasurfaces have been widely investigated for their versatile ability to manipulate wavefront and miniaturize traditional optical components into ultrathin planar devices. The integration of metasurfaces with multifunctionality and tunability has fundamentally transformed optics with unprecedented control over light propagation and manipulation. This study introduces a pioneering framework for the development of tunable metasurfaces with multifunctionality, and an example of a tunable metasurface of dual functionalities is proposed and numerically verified as one of the tunable meta-axicon for generating Bessel beams with a variable depth of focus (DOF) and a continuous-zoom metalens. Specifically, this design achieves dual-functional phase modulation by helicity-multiplexing from the combination of the geometric phase as well as the propagation phase and realizes tunability for both functionalities through rotational actuation between double metasurface layers. As a result, dual functionalities with continuous tunability of the proposed TiO2 metasurface are enabled independently for the left and right circularly polarized (LCP and RCP) incidences at 532 nm. Specifically, LCP light triggers the metasurface to function as a tunable axicon, generating non-diffracting Bessel beams with variable numerical apertures (NA) and DOFs. Conversely, the RCP incidence induces it to operate as a continuous-zoom metalens and generates variable spherical wavefront focusing on diverse focal lengths. This study not only initially implements the design of tunable meta-axicon, but also achieves the integration of such a tunable meta-axicon and continuous-zoom metalens within a single metasurface configuration. The proposed device could find potential applications in biological imaging, microscopic measurement, laser fabrication, optical manipulation, multi-plane imaging, depth estimation, optical data storage, etc.
Collapse
Affiliation(s)
- Chang Wang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (C.W.)
| | - Yan Sun
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (C.W.)
| | - Zeqing Yu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (C.W.)
| | - Xinyu Liu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (C.W.)
| | - Bingliang Chen
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (C.W.)
| | - Yang Zhang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (C.W.)
| | - Zhenrong Zheng
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (C.W.)
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| |
Collapse
|
5
|
Zhu W, Yi Y, Yi Z, Bian L, Yang H, Zhang J, Yu Y, Liu C, Li G, Wu X. High confidence plasmonic sensor based on photonic crystal fibers with a U-shaped detection channel. Phys Chem Chem Phys 2023; 25:8583-8591. [PMID: 36883940 DOI: 10.1039/d2cp04605a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In order to improve the performance of optical fiber sensing and expand its application, a photonic crystal fiber (PCF) plasmonic sensor with a U-shaped channel based on surface plasmon resonance (SPR) is proposed. We have studied the general influence rules of structural parameters such as the radius of the air hole, the thickness of the gold film and the number of U-shaped channels using COMSOL based on the finite element method. The dispersion curves and loss spectrum of the surface plasmon polariton (SPP) mode and the Y-polarization (Y-pol) mode as well as the distribution of the electric field intensity (normE) under various conditions are studied using the coupled mode theory. The maximum refractive index (RI) sensitivity achieved in the RI range of 1.38-1.43 is 24.1 μm RIU-1, which corresponds to a full width at half maximum (FWHM) of 10.0 nm, a figure of merit (FOM) of 2410 RIU-1 and a resolution of 4.15 × 10-6 RIU. The results show that the proposed sensor combines the SPR effect, which is extremely sensitive to changes in the RI of the surrounding medium and realizes real-time detection of the external environment by analyzing the light signal modulated by the sensor. In addition, the detection range and sensitivity can be extended by adjusting the structural parameters. The proposed sensor has a simple structure with excellent sensing performance, which provides a new idea and implementation method for real-time detection, long-range measurement, complex environment monitoring and highly integrated sensing, and has a strong potential practical value.
Collapse
Affiliation(s)
- Wanlai Zhu
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process TestingTechnology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yingting Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process TestingTechnology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Liang Bian
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process TestingTechnology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hua Yang
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China
| | - Yang Yu
- College of Liberal Arts and Sciences, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
| | - Chao Liu
- School of Physics and Electronics Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Gongfa Li
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwen Wu
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of science and Technology, Wuhan 430081, China
| |
Collapse
|
6
|
Sahoo MK, Anand Vs A, Kumar A. Electroplating-based engineering of plasmonic nanorod metamaterials for biosensing applications. NANOTECHNOLOGY 2023; 34:195301. [PMID: 36745912 DOI: 10.1088/1361-6528/acb948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Sensing lower molecular weight in a diluted solution using a label-free biosensor is challenging and requires a miniaturized plasmonic structure, e.g. a vertical Au nanorod (AuNR) array-based metamaterials. The sensitivity of a sensor mainly depends on transducer properties and hence for instance, the AuNR array geometry requires optimization. Physical vapour deposition methods (e.g. sputtering and e-beam evaporation) require a vacuum environment to deposit Au, which is costly, time-consuming, and thickness-limited. On the other hand, chemical deposition, i.e. electroplating deposit higher thickness in less time and at lower cost, becomes an alternative method for Au deposition. In this work, we present a detailed optimization for the electroplating-based fabrication of these metamaterials. We find that slightly acidic (6.0 < pH < 7.0) gold sulfite solution supports immersion deposition, which should be minimized to avoid uncontrolled Au deposition. Immersion deposition leads to plate-like (for smaller radius AuNR) or capped-like, i.e. mushroom (for higher radius AuNR) structure formation. The electroplating time and DC supply are the tuning parameters that decide the geometry of the vertically aligned AuNR array in area-dependent electroplating deposition. This work will have implications for developing plasmonic metamaterial-based sensors.
Collapse
Affiliation(s)
- Mihir Kumar Sahoo
- Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, IIT Bombay, Mumbai, 400076, Maharashtra, India
| | - Abhay Anand Vs
- Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, IIT Bombay, Mumbai, 400076, Maharashtra, India
| | - Anshuman Kumar
- Laboratory of Optics of Quantum Materials (LOQM), Department of Physics, IIT Bombay, Mumbai, 400076, Maharashtra, India
| |
Collapse
|
7
|
Li Z, Zhang Y, Yuan J, Hong Y, Liu H, Guo J, Dai Q, Wei Z. Three-Channel Metasurfaces for Multi-Wavelength Holography and Nanoprinting. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:183. [PMID: 36616093 PMCID: PMC9824896 DOI: 10.3390/nano13010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Metasurfaces, employed to simultaneously generate nanoprinting and holographic images, have been extensively explored recently. Among them, multi-wavelength multiplexing in a single metasurface is often accompanied by dispersion and crosstalk, which hinder the display of multicolor patterns. Here, we propose an efficient phase method to decouple the wavelength and realize a three-channel display operating at different wavelengths. Holographic images appear in the far field with the illumination of two different circularly polarized lights while a nanoprinting image is reconstructed by inserting an orthogonal optical path with the illumination of linear polarization light. The proposed metasurface is only composed of four types of unit cells, which significantly decreases the complexity of fabrication and improves the information capacity. Benefiting from its different decoding strategies and capability of multi-wavelength control, this approach may develop broad applications in information encryption, security, and color display.
Collapse
|
8
|
Xu X, Luo XQ, Liu Q, Li Y, Zhu W, Chen Z, Liu W, Wang XL. Plasmonic Sensing and Switches Enriched by Tailorable Multiple Fano Resonances in Rotational Misalignment Metasurfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4226. [PMID: 36500849 PMCID: PMC9741204 DOI: 10.3390/nano12234226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Fano resonances that feature strong field enhancement in the narrowband range have motivated extensive studies of light-matter interactions in plasmonic nanomaterials. Optical metasurfaces that are subject to different mirror symmetries have been dedicated to achieving nanoscale light manipulation via plasmonic Fano resonances, thus enabling advantages for high-sensitivity optical sensing and optical switches. Here, we investigate the plasmonic sensing and switches enriched by tailorable multiple Fano resonances that undergo in-plane mirror symmetry or asymmetry in a hybrid rotational misalignment metasurface, which consists of periodic metallic arrays with concentric C-shaped- and circular-ring-aperture unit cells. We found that the plasmonic double Fano resonances can be realized by undergoing mirror symmetry along the X-axis. The plasmonic multiple Fano resonances can be tailored by adjusting the level of the mirror asymmetry along the Z-axis. Moreover, the Fano-resonance-based plasmonic sensing that suffer from mirror symmetry or asymmetry can be implemented by changing the related structural parameters of the unit cells. The passive dual-wavelength plasmonic switches of specific polarization can be achieved within mirror symmetry and asymmetry. These results could entail benefits for metasurface-based devices, which are also used in sensing, beam-splitter, and optical communication systems.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Qing Luo
- Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Qinke Liu
- Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Yan Li
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Weihua Zhu
- Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Zhiyong Chen
- Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Wuming Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin-Lin Wang
- Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, China
- School of Mechanical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
9
|
Li M, Wang G, Gao Y, Gao Y. An Infrared Ultra-Broadband Absorber Based on MIM Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3477. [PMID: 36234605 PMCID: PMC9565646 DOI: 10.3390/nano12193477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
We designed an infrared ultra-broadband metal-insulator-metal (MIM)-based absorber which is composed of a top layer with four different chromium (Cr) nano-rings, an intermediate media of aluminum trioxide (Al2O3), and a bottom layer of tungsten (W). By using the finite-difference time-domain (FDTD), the absorption performance of the absorber was studied theoretically. The results indicate that the average absorption of the absorber can reach 94.84% in the wavelength range of 800-3000 nm. The analysis of the electric and magnetic field indicates that the ultra-broadband absorption rate results from the effect of local surface plasmon resonance (LSPR). After that, the effect of structural parameters, metal and dielectric materials on the absorptivity of the absorber was also discussed. Finally, the effect of incidence angle on absorption was investigated. It was found that it is not sensitive to incidence angle; even when incidence angle is 30°, average absorptivity can reach 90%. The absorber is easy to manufacture and simple in structure, and can be applied in infrared detection and optical imaging.
Collapse
|
10
|
Sajjad U, Hussain I, Raza W, Sultan M, Alarifi IM, Wang CC. On the Critical Heat Flux Assessment of Micro- and Nanoscale Roughened Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3256. [PMID: 36145044 PMCID: PMC9503740 DOI: 10.3390/nano12183256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The boiling crisis or critical heat flux (CHF) is a very critical constraint for any heat-flux-controlled boiling system. The existing methods (physical models and empirical correlations) offer a specific interpretation of the boiling phenomenon, as many of these correlations are considerably influenced by operational variables and surface morphologies. A generalized correlation is virtually unavailable. In this study, more physical mechanisms are incorporated to assess CHF of surfaces with micro- and nano-scale roughness subject to a wide range of operating conditions and working fluids. The CHF data is also correlated by using the Pearson, Kendal, and Spearman correlations to evaluate the association of various surface morphological features and thermophysical properties of the working fluid. Feature engineering is performed to better correlate the inputs with the desired output parameter. The random forest optimization (RF) is used to provide the optimal hyper-parameters to the proposed interpretable correlation and experimental data. Unlike the existing methods, the proposed method is able to incorporate more physical mechanisms and relevant parametric influences, thereby offering a more generalized and accurate prediction of CHF (R2 = 0.971, mean squared error = 0.0541, and mean absolute error = 0.185).
Collapse
Affiliation(s)
- Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- Research Center of Energy Conversion for New Generation of Residential, Commercial and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Imtiyaz Hussain
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Waseem Raza
- Department of Mechanical Engineering, Jeju National University, Jeju 63243, Korea
| | - Muhammad Sultan
- Department of Agricultural Engineering, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ibrahim M. Alarifi
- Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia
| | - Chi-Chuan Wang
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
| |
Collapse
|