1
|
Singh C, Jha CB, Anand AS, Kohli E, Manav N, Varshney R, Upadhyayula S, Mathur R. Copper-Based Metal-Organic Framework as a Potential Therapeutic Gas Carrier: Optimization, Synthesis, Characterization, and Computational Studies. ACS APPLIED BIO MATERIALS 2025; 8:2440-2458. [PMID: 39971623 DOI: 10.1021/acsabm.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The broad spectrum of health conditions and the global pandemic, leading to inadequate medical oxygen supply and management, has driven interest in developing porous nanocarriers for effective oxygenation strategies. We aim to develop an injectable oxygen carrier with regard to biocompatibility, safety, prehospital availability, and universal applicability. In this study, we have tried to identify important functional sites on metal-organic frameworks (MOFs) for gas binding with the help of Grand canonical Monte Carlo simulation. We have synthesized a copper-based MOF (Cu-BTC) with a 1,3,5-benzenetricarboxylic acid linker through a solvothermal approach as a competent porous adsorbent for oxygen storage and delivery. To optimize process variables, we performed statistical analysis using response surface methodology. A quadratic model was developed to study the interaction between independent variables and the response (i.e., maximizing surface area), whose adequacy is validated by the correlation between experimental and predicted values using the ANOVA method. The synthesized Cu-BTC, before and after oxygen loading, was characterized using X-ray diffraction, surface area, along with pore distribution measurement, particle size analysis, scanning electron microscopy, transmission electron microscopy, and gas adsorption studies. The Cu-BTC MOF exhibited an oxygen uptake of 4.6 mmol g-1, the highest among all the oxygen carriers reported in the literature under the same operating conditions. Overall, our findings suggest that this synthesized Cu-BTC with high surface area (1389 m2 g-1), high porosity, optimum oxygen uptake, and good biocompatibility would show potential toward efficient storage and delivery (direct to the targeted site) of medical oxygen to raise the blood oxygen saturation level.
Collapse
Affiliation(s)
- Chitrangda Singh
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chandan Bhogendra Jha
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Avnika Singh Anand
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Ekta Kohli
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Neha Manav
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Raunak Varshney
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Sreedevi Upadhyayula
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rashi Mathur
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| |
Collapse
|
2
|
Ms M, Venkatasubbu GD. Modulating Coagulation via Bioinspired Mesoporous Calcium-Decorated Silica Nanoparticles for Efficient Fibrin Clot Formation. ACS APPLIED BIO MATERIALS 2024; 7:6998-7008. [PMID: 39307996 DOI: 10.1021/acsabm.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Blood clotting is vital for preventing bleeding after an injury. Hemostasis is a complex cascade involving numerous plasma proteins. Uncontrolled bleeding leads to mortality. The presence of Ca (calcium) activates and promotes the different phases in the coagulation cascade. Even nonbiological surfaces such as silicates may activate coagulation factor XII (FXII). This causes the clotting of the blood. The exceptional hemostatic ability of the mesoporous calcium-decorated silica nanoparticles (MCSNs) is achieved by stimulating the factors needed to form fibrin mesh, a durable clot, thereby establishing hemostasis. This may be used as a hemostatic agent during an accident surgical procedure and other bleeding-related trauma conditions. This study investigates the mechanistic activation of the coagulation cascade by MCSN through blood coagulation index, clotting time, and coagulation activation studies like PT and aPTT. Our finding demonstrates that MCSN induces platelet adhesion and RBC aggregation and activates thrombin generation through distinct pathways.
Collapse
Affiliation(s)
- Marvaan Ms
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Katankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - G Devanand Venkatasubbu
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Katankulathur, Chengalpattu, Tamil Nadu 603203, India
| |
Collapse
|
3
|
Das N, Kumar A, Rayavarapu RG. Nanoarchitectonics of tunable aminosalicylate sodium encapsulated gold nanoparticles enabling multi-faceted role as capping, reducing, stabilizing and colorimetric detection of metal ions. NANOTECHNOLOGY 2024; 36:015601. [PMID: 39362239 DOI: 10.1088/1361-6528/ad82f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Despite all the advancements in aqueous synthesis of gold nanoparticles, certain features like one-pot/one-step method with minimal reactants using greener solvents are still demanding. The challenge in the aqueous phase synthesis is to balance the nucleation and precise growth of nanoparticles avoiding aggregation. In this work, we report a unique versatile unexplored molecule aminosalicylate sodium (Na-4-ASA) which functions as a capping, reducing, stabilizing and more interestingly as an encapsulating agent for gold nanoparticles. This multi-faceted molecule showed excellent control in synthesizing monodisperse tunable encapsulated nanoparticles of sizes (60 nm, 53 nm and 12 nm) exhibiting absorbance bands at 560 nm, 540 nm and 520 nm respectively. X-ray diffraction and Fourier Transmission Infra-Red validated crystalline structure and binding of Na-4-ASA onto gold nanoparticles surface respectively. Furthermore, the AuNPs were investigated for their ability to detect metal ions through colorimetric change where purification via centrifugation turned out to be a key parameter in enabling the detection. Selectivity towards Al3+was observed with the 12 nm sized nanoparticles at 0.5 ppm metal ion concentration. The AuNPs of sizes 60 nm and 53 nm detected Al3+/Cr3+/Fe3+and Al3+/Fe3+respectively indicating the impact of size in heavy metal ions detection. The greater the size of AuNPs, lower is the selectivity where detection of three metal ions were observed and vice versa i.e. smaller-sized AuNPs showed high selectivity by detecting single metal ion. Also, the time duration for detection increased with decreasing size of the AuNPs. Finally, LOD for the heavy metal ions Al3+, Cr3+, and Fe3+were calculated as 67 ppb, 78 ppb, 76 ppb respectively.
Collapse
Affiliation(s)
- Nabojit Das
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Kumar
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raja Gopal Rayavarapu
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Jha CB, Singh C, Randhawa JK, Kaul A, Varshney R, Singh S, Kaushik A, Manna K, Mathur R. Synthesis and evaluation of curcumin reduced and capped gold nanoparticles as a green diagnostic probe with therapeutic potential. Colloids Surf B Biointerfaces 2024; 241:114050. [PMID: 38936032 DOI: 10.1016/j.colsurfb.2024.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Curcumin, a compound in turmeric, shows promise for its anti-cancer properties. In this study, we successfully synthesised curcumin-reduced and capped gold nanoparticles. Most evaluations have been limited to in-vitro studies for these nanoparticles; our study takes a step further by highlighting the in-vivo assessment of these curcumin-reduced and capped gold nanoparticles (GNPCs) using non-invasive imaging (SPECT and optical) and possible therapeutic potential. The GNPCs showed an average hydrodynamic diameter of 58 nm and a PDI of 0.336. The synthesised and fully characterised GNPCs showed ex-vivo hemolysis value of ≤ 1.74 % and serum stability of ≥ 95 % over 24 h. Using in-vivo non-invasive (SPECT and optical Imaging), prolonged circulation and enhanced bioavailability of GNPCs were seen. The biodistribution studies after radiolabelling GNPCs with 99 mTc complemented the optical imaging. The SPECT images showed higher uptake of the GNPCs at the tumour site, viz the contralateral muscle and the native Curcumin, resulting in a high target-to-non-target ratio that differentiated the tumour sufficiently and enhanced the diagnostics. Other organs also accumulate radiolabeled GNPCs in systemic circulation; bio dosimetry is performed. It was found that the dose received by the different organs was safe for use, and the in-vivo toxicity studies in rats indicated negligible toxicity over 30 days. The tumour growth was also reduced in mice models treated with GNPCs compared to the control. These significant findings demonstrate that GNPC shows synergistic activity in vivo, indicating its ability as a green diagnostic probe that has the potential for therapy.
Collapse
Affiliation(s)
- Chandan Bhogendra Jha
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chitrangda Singh
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | | | - Ankur Kaul
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Raunak Varshney
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Sweta Singh
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Aruna Kaushik
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashi Mathur
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India.
| |
Collapse
|
5
|
M S M, Samal DB, Amirtraj J V, Subramanian S, Venkatasubbu GD. Enhanced coagulation cascade activation and styptic effects of Zn@SiO 2 nanocomposite. Colloids Surf B Biointerfaces 2024; 239:113927. [PMID: 38714078 DOI: 10.1016/j.colsurfb.2024.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
Humans often have bleeding, which exerts substantial selective pressure on the coagulation system to optimize hemostasis in a variety of situations. Uncontrolled hemorrhage due to severe trauma leads to morbidity and mortality. Although nonbiological surfaces such as silicates can activate coagulation factor XII (FXII), the presence of Zn (Zinc) in the material stimulates and activates the various steps in the coagulation cascade. This results in blood clotting. The Zn@SiO2 nanocomposite has an excellent hemostatic property that establishes hemostasis by activating the factors responsible for the formation of a stable clot called fibrin mesh. This can be used as a hemostatic agent during surgeries and in any other trauma condition related to bleeding. Zn@SiO2 was synthesized and characterized with XRD, FTIR and HRTEM. It is analyzed for its RBC (Red Blood Corpuscles) aggregation and Platelet adhesion ability, fibrin formation, thrombus formation and prothrombin time (PT), Activated Partial Thromboplastin Time (aPTT), D-dimer for its ability to activate the coagulation cascade to achieve stable clotting.
Collapse
Affiliation(s)
- Marvaan M S
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India
| | - Debashree Banita Samal
- Department of Biotechnology, School of Bioengineering, College of Engineering and technology, SRM Institute of science and technology, Katankulathur, Chengalpattu, Tamilnadu, India; Apollo Specialty Hospitals, OMR, Chennai, Tamilnadu, India
| | | | | | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India.
| |
Collapse
|
6
|
Huang C, Wang M, Yu S, Yu DG, Bligh SWA. Electrospun Fenoprofen/Polycaprolactone @ Tranexamic Acid/Hydroxyapatite Nanofibers as Orthopedic Hemostasis Dressings. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:646. [PMID: 38607180 PMCID: PMC11013851 DOI: 10.3390/nano14070646] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Dressings with multiple functional performances (such as hemostasis, promoting regeneration, analgesia, and anti-inflammatory effects) are highly desired in orthopedic surgery. Herein, several new kinds of medicated nanofibers loaded with several active ingredients for providing multiple functions were prepared using the modified coaxial electrospinning processes. With an electrospinnable solution composed of polycaprolactone and fenoprofen as the core working fluid, several different types of unspinnable fluids (including pure solvent, nanosuspension containing tranexamic acid and hydroxyapatite, and dilute polymeric solution comprising tranexamic acid, hydroxyapatite, and polyvinylpyrrolidone) were explored to implement the modified coaxial processes for creating the multifunctional nanofibers. Their morphologies and inner structures were assessed through scanning and transmission electron microscopes, which all showed a linear format without the discerned beads or spindles and a diameter smaller than 1.0 μm, and some of them had incomplete core-shell nanostructures, represented by the symbol @. Additionally, strange details about the sheaths' topographies were observed, which included cracks, adhesions, and embedded nanoparticles. XRD and FTIR verified that the drugs tranexamic acid and fenoprofen presented in the nanofibers in an amorphous state, which resulted from the fine compatibility among the involved components. All the prepared samples were demonstrated to have a fine hydrophilic property and exhibited a lower water contact angle smaller than 40° in 300 ms. In vitro dissolution tests indicated that fenoprofen was released in a sustained manner over 6 h through a typical Fickian diffusion mechanism. Hemostatic tests verified that the intentional distribution of tranexamic acid on the shell sections was able to endow a rapid hemostatic effect within 60 s.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Menglong Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| | - Siyou Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (M.W.); (S.Y.)
| | - Sim Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|