1
|
Jachym W, Urban MW, Kijanka P. Estimation of the phase velocity dispersion curves for viscoelastic materials using Point Limited Shear Wave Elastography. ULTRASONICS 2025; 148:107566. [PMID: 39817930 DOI: 10.1016/j.ultras.2025.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation. We introduce a new method called Point Limited Shear Wave Elastography (PL-SWE), which aims to reconstruct phase velocity dispersion curves using a minimal number of measurement points in the spatial domain (as few as two signals can be utilized). We investigated how the positioning of the first signal and the distance between selected signals affect the shear wave velocity dispersion estimation in PL-SWE. The effectiveness of this novel approach was evaluated through the analysis of analytical phantom data in viscoelastic media, along with experimental data from custom-made tissue-mimicking elastic and viscoelastic phantoms, and in vivo renal transplant data. A comparative analysis with the 2D-FT technique revealed that PL-SWE provided phase velocity dispersion curve estimates with root mean squared percentage error (RMSPE) values of less than 1.61% for analytical phantom data, 1.58% for elastic phantoms, 4.29% for viscoelastic phantoms and 7.68% for in vivo data, while utilizing significantly fewer signals compared to 2D-FT. The results demonstrate that the PL-SWE method also outperforms the PG method. For the viscoelastic phantoms, the mean RMSPE values using PL-SWE ranged from 2.61% to 4.29%, while the PG method produced RMSPE values between 3.56% and 15%. In the case of in vivo data, PL-SWE yielded RMSPE values between 7.01% and 7.68%, while PG results ranged from 17% to 418%. These findings highlight the superior accuracy and reliability of the PL-SWE method, particularly when compared to the PG approach. Our tests demonstrate that PL-SWE can effectively measure the phase velocity of both elastic and viscoelastic materials and tissues using a limited number of signals. Utilizing a minimal number of spatial measurement points could enable accurate assessments even in cases with restricted field of view, thereby expanding the applicability of SWE across various patient populations.
Collapse
Affiliation(s)
- Wiktor Jachym
- Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland.
| |
Collapse
|
2
|
Urban M, Vasconcelos L, Brom K, Dave J, Kijanka P. Shear wave elastography primer for the abdominal radiologist. Abdom Radiol (NY) 2025:10.1007/s00261-025-04806-1. [PMID: 39883164 DOI: 10.1007/s00261-025-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes. METHODS The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed. The physics of shear wave propagation are briefly described for elastic and viscoelastic tissues. Additionally, shear wave propagation in homogeneous and inhomogeneous cases is addressed. RESULTS SWE technology has been implemented by many clinical vendors with different capabilities. Various quality metrics are used to define valid measurements based on aspects of the shear wave signals or wave velocity estimates. CONCLUSION There are many uses for SWE in abdominal imaging, but it is important to understand how the measurements are performed to gauge their utility for diagnosis of different conditions. Continued efforts to make the technology robust in complex clinical situations are ongoing, but many applications actively benefit from added information about tissue mechanical properties for a more holistic view of the patient for diagnosis or assessment of prognosis and treatment management.
Collapse
|
3
|
Vasconcelos L, Grady J, Aristizabal S, Oliveira R, Urban MW, Chen S, Sanchez W, Greenleaf JF, Nenadic I. Attenuation Measuring Ultrasound Shearwave Elastography (AMUSE) as Noninvasive Imaging Biomarker for Liver Acute Cellular Rejection. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:149-158. [PMID: 39414407 PMCID: PMC11573631 DOI: 10.1016/j.ultrasmedbio.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE There are over 9000 liver transplants in the United States per year, with acute cellular rejection (ACR) being a prevalent early post-transplant complication (20%-40%) treated using corticosteroids. Ischemia-reperfusion injury (IRI), another early post-transplant pathology, has similar laboratory results but typically resolves without therapy. ACR confirmation requires invasive liver biopsy, bearing risks like hemorrhage and pneumothorax. Attenuation Measuring Ultrasound Shearwave Elastography (AMUSE) assesses shear wave velocity (c) and attenuation (α) without rheological models and have shown potential for noninvasive tissue characterization. METHODS We analyzed 58 transplanted livers suspected for ACR by comparing AMUSE measurements to biopsy findings. Thirteen patients underwent longitudinal tracking from ACR diagnosis on day 7 to therapy initiation and repeat biopsy on day 14. Statistical methods and support vector machine (SVM) were used for performance analysis. RESULTS AMUSE measurements at 100, 200, and 300 Hz showed statistical significance (p < 0.001) for ACR presence, with 200 Hz exhibiting the highest Spearman correlation coefficients for c and α (0.68 and -0.83). High c (> 2.2 m/s) and low α (< 130 Np/m) at 200 Hz correlated with ACR diagnostic, while low c and high α indicated no ACR. Combining c and α into a single biomarker α/c improved patient differentiation, yielding an F1-score of 0.97. SVM was used to evaluate AMUSE ACR staging capabilities using all available frequencies, reaching 0.95 F1-score for categorical classification, with an AUROC of 0.99. When evaluating the presence of ACR the SVM reached 0.99 F1-score, with 1.00 sensitivity/recall. CONCLUSION These findings support the use of AMUSE potential for detection and staging of liver ACR.
Collapse
Affiliation(s)
| | - John Grady
- Department of Internal Medicine, University of Michigan Hospital, Ann Arbor, MI, USA
| | | | - Rebeca Oliveira
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - William Sanchez
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ivan Nenadic
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
4
|
Meyer T, Anders M, Pietzcker AZ, Doyley M, Görner S, Böhm O, Engl P, Safraou Y, Braun J, Sack I, Tzschätzsch H. Rapid wideband characterization of viscoelastic material properties by Bessel function-based time harmonic ultrasound elastography (B-THE). J Mech Behav Biomed Mater 2024; 160:106746. [PMID: 39303417 DOI: 10.1016/j.jmbbm.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Elastography is an emerging diagnostic technique that uses conventional imaging modalities such as sonography or magnetic resonance imaging to quantify tissue stiffness. However, different elastography methods provide different stiffness values, which require calibration using well-characterized phantoms or tissue samples. A comprehensive, fast, and cost-effective elastography technique for phantoms or tissue samples is still lacking. Therefore, we propose ultrasound Bessel-fit-based time harmonic elastography (B-THE) as a novel tool to provide rapid feedback on stiffness-related shear wave speed (SWS) and viscosity-related wave penetration rate (PR) over a wide range of harmonic vibration frequencies. The method relies on external induction and B-mode capture of cylindrical shear waves that satisfy the Bessel wave equation for efficient fit-based parameter recovery. B-THE was demonstrated in polyacrylamide phantoms in the frequency range of 20-200 Hz and was cross-validated by magnetic resonance elastography (MRE) using clinical 3-T MRI and compact 0.5-T tabletop MRI scanners. Frequency-independent material parameters were derived from rheological models and validated by numerical simulations. B-THE quantified frequency-resolved SWS and PR 13 to 176 times faster than more expensive clinical MRE and tabletop MRE and have a good accuracy (relative deviation to reference: 6 %, 10 % and 4 % respectively). Simulations of liver-mimicking material phantoms showed that a simultaneous fit of SWS and PR based on the fractional Maxwell rheological model outperformed a fit on PR solely. B-THE provides a comprehensive and fast elastography technique for the quantitative characterization of the viscoelastic behavior of soft tissue mimicking materials.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Anders
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton Z Pietzcker
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marvin Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Steffen Görner
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Böhm
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pascal Engl
- Department of Physics, Sensor and Ultrasound Technology, University of Applied Sciences Merseburg, Merseburg, Germany
| | - Yasmine Safraou
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Adikary S, Urban MW, Guddati MN. Twin Peak Method for Estimating Tissue Viscoelasticity using Shear Wave Elastography. ARXIV 2024:arXiv:2411.11572v1. [PMID: 39606734 PMCID: PMC11601804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Tissue viscoelasticity is becoming an increasingly useful biomarker beyond elasticity and can theoretically be estimated using shear wave elastography (SWE), by inverting the propagation and attenuation characteristics of shear waves. Estimating viscosity is often more difficult than elasticity because attenuation, the main effect of viscosity, leads to poor signal-to-noise ratio of the shear wave motion. In the present work, we provide an alternative to existing methods of viscoelasticity estimation that is robust against noise. The method minimizes the difference between simulated and measured versions of two sets of peaks (twin peaks) in the frequency-wavenumber domain, obtained first by traversing through each frequency and then by traversing through each wavenumber. The slopes and deviation of the twin peaks are sensitive to elasticity and viscosity respectively, leading to the effectiveness of the proposed inversion algorithm for characterizing mechanical properties. This expected effectiveness is confirmed through in silico verification, followed by ex vivo validation and in vivo application, indicating that the proposed approach can be effectively used in accurately estimating viscoelasticity, thus potentially contributing to the development of enhanced biomarkers.
Collapse
|
6
|
Yazdani L, Selladurai S, Rafati I, Bhatt M, Montagnon E, Chayer B, Olivié D, Giard JM, Sebastiani G, Nguyen BN, Cloutier G, Tang A. Between-Visit Reproducibility of Shear Wave Viscoelastography in Volunteers and Patients With Metabolic Dysfunction-Associated Steatotic Liver Disease. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:2095-2108. [PMID: 39115144 DOI: 10.1002/jum.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVE To assess the reproducibility of six ultrasound (US)-determined shear wave (SW) viscoelastography parameters for assessment of mechanical properties of the liver in volunteers and patients with biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) or metabolic dysfunction-associated steatohepatitis (MASH). METHODS This prospective, cross-sectional, institutional review board-approved study included 10 volunteers and 20 patients with MASLD or MASH who underwent liver US elastography twice, at least 2 weeks apart. SW speed (SWS), Young's modulus (E), shear modulus (G), SW attenuation (SWA), SW dispersion (SWD), and viscosity were computed from radiofrequency data recorded on a research US scanner. Linear mixed models were used to consider the sonographer on duty as a confounder. The reproducibility of measurements was assessed by intraclass correlation coefficient (ICC), coefficient of variation (CV), reproducibility coefficient (RDC), and Bland-Altman analyses. RESULTS The sonographer performing the exam had no impact on viscoelastic parameters (P > .05). ICCs of SWS, E, G, SWA, SWD, and viscosity were, respectively, 0.89 (95% confidence intervals [CI]: 0.79-0.95), 0.81 (95% CI: 0.79-0.95), 0.90 (95% CI: 0.80-0.95), 0.96 (95% CI: 0.93-0.98), 0.78 (95% CI: 0.60-0.89), and 0.90 (95% CI: 0.80-0.95); CVs were 11.9, 23.3, 24.2, 10.1, 29.0, and 32.2%; RDCs were 33.0, 64.5, 66.9, 27.7, 80.3, and 89.2%, and Bland-Altman mean biases and 95% limits of agreement were -0.05 (-0.45, 0.35) m/s, -0.61 (-5.33, 4.10) kPa, -0.25 (-2.06, 1.56) kPa, -0.01 (-0.27, 0.26) Np/m/Hz, -0.09 (-7.09, 6.91) m/s/kHz, and -0.33 (-2.60, 1.94) Pa/s, between the two visits. CONCLUSION US-determined viscoelastography parameters can be measured with high reproducibility and consistency between two visits 2 weeks apart on the same ultrasound machine.
Collapse
Affiliation(s)
- Ladan Yazdani
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada
| | - Sathiyamoorthy Selladurai
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Iman Rafati
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada
| | - Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Emmanuel Montagnon
- Laboratory of Clinical Image Processing, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Boris Chayer
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Damien Olivié
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Jeanne-Marie Giard
- Department of Hepatology, Université de Montréal, Montreal, Quebec, Canada
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bich N Nguyen
- Service of Pathology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - An Tang
- Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada
- Laboratory of Clinical Image Processing, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| |
Collapse
|
7
|
Zhang LX, Dioguardi B, Vilgrain V, Fang C, Sidhu PS, Cloutier G, Tang A. Quantitative Ultrasound and Ultrasound-Based Elastography for Chronic Liver Disease: Practical Guidance, From the AJR Special Series on Quantitative Imaging. AJR Am J Roentgenol 2024. [PMID: 39259009 DOI: 10.2214/ajr.24.31709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Quantitative ultrasound (QUS) and ultrasound-based elastography techniques are emerging as non-invasive effective methods for assessing chronic liver disease. They are more accurate than B-mode imaging alone and more accessible than MRI as alternatives to liver biopsy. Early detection and monitoring of diffuse liver processes such as steatosis, inflammation, and fibrosis play an important role in guiding patient management. The most widely available and validated techniques are attenuation-based QUS techniques and shear-wave elastography techniques that measure shear-wave speed. Other techniques are supported by a growing body of evidence and are increasingly commercialized. This review explains general physical concepts of QUS and ultrasound-based elastography techniques for evaluating chronic liver disease. The first section describes QUS techniques relying on attenuation, backscatter, and speed of sound. The second section discusses ultrasound-based elastography techniques analyzing shear-wave speed, shear-wave dispersion, and shear-wave attenuation. With an emphasis on clinical implementation, each technique's diagnostic performance along with thresholds for various clinical applications are summarized, to provide guidance on analysis and reporting for radiologists. Measurement methods, advantages, and limitations are also discussed. The third section explores developments in quantitative contrast-enhanced and vascular ultrasound that are relevant to chronic liver disease evaluation.
Collapse
Affiliation(s)
- Li Xin Zhang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
| | - Burgio Dioguardi
- Department of Radiology, Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Clichy, France
- Research Center on Inflammation, Université Paris Cité, Paris, France
| | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Clichy, France
| | - Cheng Fang
- Department of Radiology, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS UK
- Department of Imaging Sciences, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE17EH UK
| | - Paul S Sidhu
- Department of Radiology, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS UK
- Department of Imaging Sciences, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE17EH UK
| | - Guy Cloutier
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Canada
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - An Tang
- Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Canada
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| |
Collapse
|
8
|
Yengul SS, Barbone PE, Madore B. Characterizing dispersion in bovine liver using ARFI-based shear wave rheometry. Biomed Phys Eng Express 2024; 10:10.1088/2057-1976/ad6b31. [PMID: 39102840 PMCID: PMC11449399 DOI: 10.1088/2057-1976/ad6b31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Background:Dispersion presents both a challenge and a diagnostic opportunity in shear wave elastography (SWE).Shear Wave Rheometry(SWR) is an inversion technique for processing SWE data acquired using an acoustic radiation force impulse (ARFI) excitation. The main advantage of SWR is that it can characterize the shear properties of homogeneous soft media over a wide frequency range. Assumptions associated with SWR include tissue homogeneity, tissue isotropy, and axisymmetry of the ARFI excitation).Objective:Evaluate the validity of the SWR assumptions in ex vivo bovine liver.Approach:SWR was used to measure the shear properties of bovine liver tissue as function of frequency over a large frequency range. Assumptions associated with SWR (tissue homogeneity, tissue isotropy, and axisymmetry of the ARFI excitation) were evaluated through measurements performed at multiple locations and probe orientations. Measurements focused on quantities that would reveal violations of the assumptions.Main results:Measurements of shear properties were obtained over the 25-250 Hz range, and showed a 4-fold increase in shear storage modulus (from 1 to 4 kPa) and over a 10-fold increase in the loss modulus (from 0.2 to 3 kPa) over that decade-wide frequency range. Measurements under different conditions were highly repeatable, and model error was low in all cases.Significance and Conclusion:SWR depends on modeling the ARFI-induced shear wave as a full vector viscoelastic shear wave resulting from an axisymmetric source; it is agnostic to any specific rheological model. Despite this generality, the model makes three main simplifying assumptions. These results show that the modeling assumptions used in SWR are valid in bovine liver over a wide frequency band.
Collapse
Affiliation(s)
- Sanjay S. Yengul
- Department of Mechanical Engineering, Boston University. Boston, MA, 02215 USA
| | - Paul E. Barbone
- Department of Mechanical Engineering, Boston University. Boston, MA, 02215 USA
| | - Bruno Madore
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
9
|
Chen X, Li X, Turco S, van Sloun RJG, Mischi M. Ultrasound Viscoelastography by Acoustic Radiation Force: A State-of-the-Art Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:536-557. [PMID: 38526897 DOI: 10.1109/tuffc.2024.3381529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker. Moreover, since biological tissues are inherently viscoelastic, accounting for viscosity in the tissue characterization process enhances the accuracy of the elasticity estimation. Recently, methods exploiting different acquisition and processing techniques have been proposed to perform ultrasound viscoelastography. After introducing the physics describing viscoelasticity, a comprehensive overview of the currently available USE acquisition techniques is provided, followed by a structured review of the existing viscoelasticity estimators classified according to the employed processing technique. These estimators are further reviewed from a clinical usage perspective, and current outstanding challenges are discussed.
Collapse
|
10
|
Bosio G, Destrempes F, Roy Cardinal MH, Cloutier G. Effect of rt-PA on Shear Wave Mechanical Assessment and Quantitative Ultrasound Properties of Blood Clot Kinetics In Vitro. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:829-840. [PMID: 38205972 DOI: 10.1002/jum.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The consequences associated with blood clots are numerous and are responsible for many deaths worldwide. The assessment of treatment efficacy is necessary for patient follow-up and to detect treatment-resistant patients. The aim of this study was to characterize the effect of treatment on blood clots in vitro using quantitative ultrasound parameters. METHODS Blood from 10 pigs was collected to form three clots per pig in gelatin phantoms. Clots were subjected to 1) no treatment, 2) rt-PA (recombinant tissue plasminogen activator) treatment after 20 minutes of clotting, and 3) rt-PA treatment after 60 minutes of clotting. Clots were weighted before and after the experiment to assess the treatment effect by the mass loss. The clot kinetics was studied over 100 minutes using elastography (Young's modulus, shear wave dispersion, and shear wave attenuation). Homodyne K-distribution (HKD) parameters derived from speckle statistics were also studied during clot formation and dissolving (diffuse-to-total signal power ratio and intensity parameters). RESULTS Treated clots loosed significantly more mass than non-treated ones (P < .005). A significant increase in Young's modulus was observed over time (P < .001), and significant reductions were seen for treated clots at 20 or 60 minutes compared with untreated ones (P < .001). The shear wave dispersion differed for treated clots at 60 minutes versus no treatments (P < .001). The shear wave attenuation decreased over time (P < .001), and was different for clots treated at 20 minutes versus no treatments (P < .031). The HKD intensity parameter varied over time (P < .032), and was lower for clots treated at 20 and 60 minutes than those untreated (P < .001 and P < .02). CONCLUSION The effect of rt-PA treatment could be confirmed by a decrease in Young's modulus and HKD intensity parameter. The shear wave dispersion and shear wave attenuation were sensitive to late and early treatments, respectively. The Young's modulus, shear wave attenuation, and HKD intensity parameter varied over time despite treatment.
Collapse
Affiliation(s)
- Guillaume Bosio
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Kijanka P, Vasconcelos L, Mandrekar J, Urban MW. Evaluation of Robustness of S-Transform Based Phase Velocity Estimation in Viscoelastic Phantoms and Renal Transplants. IEEE Trans Biomed Eng 2024; 71:954-966. [PMID: 37824308 PMCID: PMC10947612 DOI: 10.1109/tbme.2023.3323983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ultrasound shear wave elastography (SWE) methods are being used to differentiate healthy versus diseased tissue on the basis of their viscoelastic mechanical properties. Tissue viscoelasticity is often studied by analyzing shear wave phase velocity dispersion curves, which is the variation of phase velocity with frequency or wavelength. Recently, a unique approach using a generalized Stockwell transformation (GST-SFK) was proposed for the calculation of dispersion curves in viscoelastic media over expanded frequency band. In this work, the method's robustness was evaluated on data from five custom-made viscoelastic tissue-mimicking phantoms and sixty in vivo renal transplants. For each phantom, 15 shear wave motion data acquisitions were taken, while 10-13 acquisitions were acquired for renal transplants measured in the renal cortex. For each data-set mean and standard deviation (SD) of estimated phase velocity dispersion curves were studied. In addition, the viscoelastic parameters of the Zener model were examined, which were preceded by a convergence analysis. For viscoelastic phantoms scanned with a research ultrasound scanner, and for the in vivo renal transplants scanned with a clinical scanner, the decisive advantage of the GST-SFK method over the standard two-dimensional Fourier transform (2D-FT) method was shown. The GST-SFK method provided dispersion curve estimates with lower SD over a wider frequency band in comparison to the 2D-FT method. These advantages are relevant to the analysis of the mechanical properties of tissues in clinical practice to discriminate healthy from diseased tissue.
Collapse
|
12
|
Bosio G, Destrempes F, Yazdani L, Roy Cardinal MH, Cloutier G. Resonance, Velocity, Dispersion, and Attenuation of Ultrasound-Induced Shear Wave Propagation in Blood Clot In Vitro Models. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:535-551. [PMID: 38108551 DOI: 10.1002/jum.16387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Improve the characterization of mechanical properties of blood clots. Parameters derived from shear wave (SW) velocity and SW amplitude spectra were determined for gel phantoms and in vitro blood clots. METHODS Homogeneous phantoms and phantoms with gel or blood clot inclusions of different diameters and mechanical properties were analyzed. SW amplitude spectra were used to observe resonant peaks. Parameters derived from those resonant peaks were related to mimicked blood clot properties. Three regions of interest were tested to analyze where resonances occurred the most. For blood experiments, 20 samples from different pigs were analyzed over time during a 110-minute coagulation period using the Young modulus, SW frequency dispersion, and SW attenuation. RESULTS The mechanical resonance was manifested by an increase in the number of SW spectral peaks as the inclusion diameter was reduced (P < .001). In blood clot inclusions, the Young modulus increased over time during coagulation (P < .001). Descriptive spectral parameters (frequency peak, bandwidth, and distance between resonant peaks) were linearly correlated with clot elasticity values (P < .001) with R2 = .77 for the frequency peak, .60 for the bandwidth, and .48 for the distance between peaks. The SW dispersion and SW attenuation reflecting the viscous behavior of blood clots decreased over time (P < .001), mainly in the early stage of coagulation (first minutes). CONCLUSION The confined soft inclusion configuration favored SW mechanical resonances potentially challenging the computation of spectral-based parameters, such as the SW attenuation. The impact of resonances can be reduced by properly selecting the region of interest for data analysis.
Collapse
Affiliation(s)
- Guillaume Bosio
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Ladan Yazdani
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Guy Cloutier
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Vasconcelos L, Kijanka P, Grande JP, Oliveira R, Amador C, Aristizabal S, Sanger NM, Rule AD, Atwell TD, Urban MW. Kidney cortex shear wave motion simulations based on segmented biopsy histology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108035. [PMID: 38290290 PMCID: PMC10922860 DOI: 10.1016/j.cmpb.2024.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Biopsy stands as the gold standard for kidney transplant assessment, yet its invasive nature restricts frequent use. Shear wave elastography (SWE) is emerging as a promising alternative for kidney transplant monitoring. A parametric study involving 12 biopsy data sets categorized by standard biopsy scores (3 with normal histology, 3 with interstitial inflammation (i), 3 with interstitial fibrosis (ci), and 3 with tubular atrophy (ct)), was conducted to evaluate the interdependence between microstructural variations triggered by chronic allograft rejection and corresponding alterations in SWE measurements. METHODS Heterogeneous shear wave motion simulations from segmented kidney cortex sections were performed employing the staggered-grid finite difference (SGFD) method. The SGFD method allows the mechanical properties to be defined on a pixel-basis for shear wave motion simulation. Segmentation techniques enabled the isolation of four histological constituents: glomeruli, tubules, interstitium, and fluid. Baseline ex vivo Kelvin-Voigt mechanical properties for each constituent were drawn from established literature. The parametric evaluation was then performed by altering the baseline values individually. Shear wave velocity dispersion curves were measured with the generalized Stockwell transform in conjunction with slant frequency-wavenumber analysis (GST-SFK) algorithm. By fitting the curve within the 100-400 Hz range to the Kelvin-Voigt model, the rheological parameters, shear elasticity (µ1) and viscosity (µ2), were estimated. A time-to-peak algorithm was used to estimate the group velocity. The resultant in silico models emulated the heterogeneity of kidney cortex within the shear wave speed (SWS) reconstructions. RESULTS The presence of inflammation showed considerable spatial composition disparities compared to normal cases, featuring a 23 % increase in interstitial area and a 19 % increase in glomerular area. Concomitantly, there was a reduction of 12 % and 47 % in tubular and fluid areas, respectively. Consequently, mechanical changes induced by inflammation predominate in terms of rheological differentiation, evidenced by increased elasticity and viscosity. Mild tubular atrophy showed significant elevation in group velocity and µ1. Conversely, mild and moderate fibrosis exhibited negligible alterations across all parameters, compatible with relatively limited morphological impact. CONCLUSIONS This proposed model holds promise in enabling patient-specific simulations of the kidney cortex, thus facilitating exploration into how pathologies altering cortical morphology correlates to modifications in SWE-derived rheological measurements. We demonstrated that inflammation caused substantial changes in measured mechanical properties.
Collapse
Affiliation(s)
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Krakow, Krakow, Poland
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rebeca Oliveira
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Nicholas M Sanger
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Andrew D Rule
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
14
|
Khan S, Goswami S, Feng F, Hollenbach S, Doyley MM, McAleavey SA. Probing Tissue Viscoelasticity With STL Ultrasound Shearwave Spectroscopy Using Cole-Cole Diagrams. IEEE Trans Biomed Eng 2024; 71:916-928. [PMID: 37801375 DOI: 10.1109/tbme.2023.3322420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
OBJECTIVE Viscoelasticity is mapped by dispersion in shearwave elastography. Incomplete spectral information of shearwaves is therefore used to estimate mechanical stiffness. We propose capturing the "full-waveform-information" of the shear wave spectra to better resolve complex shear modulus μ* (ω). Approach is validated on phantom models, animal tissues, and feasibility demonstrated on human post-delivery placenta. METHODS We captured robust estimates of μ* in ex-vivo livers subjected to water bath ablation, glutaraldehyde exposure and in the placenta. RESULTS Complex modulus at 200 Hz is more reflective of tissue stiffness than cross-correlation estimate. Bias increased in phantoms with higher gelatin (G) (0.65: 6% G) and oil (O) (0.58: 6% G and 40% O) concentration, compared to elastic phantoms with low stiffness (0.33: 3% G). Actual tissues also reported higher bias in cross-correlation estimate (rabbit liver: 0.61, porcine liver: 2.20, and human placenta: 0.63). Stiffness is sensitive to ablation temperature, where the overall modulus changed from 3.02 KPa at 16 °C to 2.75 KPa at 56 °C in water bath. With exposure to Glutaraldehyde, the overall modulus increased from 2.37 to 9.03 KPa. Reconstruction errors in the loss modulus decreased by 68% with the power law compared to a Maxwell model in porcine livers with Cole-Cole inverse fitting. CONCLUSION Omitting Shear wave attenuation leads to bias. Reconstruction of rheological response with a model is sensitive to its architecture and also the framework. SIGNIFICANCE We use "full spectral information" in ultrasound shear wave elastography to better map μ*(ω) changes in viscoelastic tissues.
Collapse
|
15
|
Kataria S, Juneja D, Singh O. Transient elastography (FibroScan) in critical care: Applications and limitations. World J Meta-Anal 2023; 11:340-350. [DOI: 10.13105/wjma.v11.i7.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 12/14/2023] Open
Abstract
FibroScan® is a non-invasive device that assesses the ‘hardness’ (or stiffness) of the liver via the technique of transient elastography. Because fibrous tissue is harder than normal liver, the degree of hepatic fibrosis can be inferred from the liver hardness. This technique is increasingly being employed to diagnose liver fibrosis, even in critically ill patients. It is now being used not only for diagnosis and staging of liver cirrhosis, but also for outcome prognostication. However, the presence of several confounding factors, especially in critically ill patients, may make interpretation of these results unreliable. Through this review we aim to describe the indications and pitfalls of employing FibroScan in patients admitted to intensive care units.
Collapse
Affiliation(s)
- Sahil Kataria
- Department of Critical Care Medicine, Holy Family Hospital, New Delhi 110025, India
| | - Deven Juneja
- Department of Critical Care Medicine, Max Super Speciality Hospital, New Delhi 110017, India
| | - Omender Singh
- Department of Critical Care Medicine, Max Super Speciality Hospital, New Delhi 110017, India
| |
Collapse
|
16
|
Yazdani L, Rafati I, Gesnik M, Nicolet F, Chayer B, Gilbert G, Volniansky A, Olivié D, Giard JM, Sebastiani G, Nguyen BN, Tang A, Cloutier G. Ultrasound Shear Wave Attenuation Imaging for Grading Liver Steatosis in Volunteers and Patients With Non-alcoholic Fatty Liver Disease: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2264-2272. [PMID: 37482477 DOI: 10.1016/j.ultrasmedbio.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE The aims of the work described here were to assess shear wave attenuation (SWA) in volunteers and patients with non-alcoholic fatty liver disease (NAFLD) and compare its diagnostic performance with that of shear wave dispersion (SWD), magnetic resonance imaging (MRI) proton density fat fraction (PDFF) and biopsy. METHODS Forty-nine participants (13 volunteers and 36 NAFLD patients) were enrolled. Ultrasound and MRI examinations were performed in all participants. Biopsy was also performed in patients. SWA was used to assess histopathology grades as potential confounders. The areas under curves (AUCs) of SWA, SWD and MRI-PDFF were assessed in different steatosis grades by biopsy. Youden's thresholds of SWA were obtained for steatosis grading while using biopsy or MRI-PDFF as the reference standard. RESULTS Spearman's correlations of SWA with histopathology (steatosis, inflammation, ballooning and fibrosis) were 0.89, 0.73, 0.62 and 0.31, respectively. Multiple linear regressions of SWA confirmed the correlation with steatosis grades (adjusted R2 = 0.77, p < 0.001). The AUCs of MRI-PDFF, SWA and SWD were respectively 0.97, 0.99 and 0.94 for S0 versus ≥S1 (p > 0.05); 0.94, 0.98 and 0.78 for ≤S1 versus ≥S2 (both MRI-PDFF and SWA were higher than SWD, p < 0.05); and 0.90, 0.93 and 0.68 for ≤S2 versus S3 (both SWA and MRI-PDFF were higher than SWD, p < 0.05). SWA's Youden thresholds (Np/m/Hz) (sensitivity, specificity) for S0 versus ≥S1, ≤S1 versus ≥S2 and ≤S2 versus S3 were 1.05 (1.00, 0.92), 1.37 (0.96, 0.96) and 1.51 (0.83, 0.87), respectively. These values were 1.16 (1.00, 0.81), 1.49 (0.91, 0.82) and 1.67 (0.87, 0.92) when considering MRI-PDFF as the reference standard. CONCLUSION In this pilot study, SWA increased with increasing steatosis grades, and its diagnostic performance was higher than that of SWD but equivalent to that of MRI-PDFF.
Collapse
Affiliation(s)
- Ladan Yazdani
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Iman Rafati
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Marc Gesnik
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Frank Nicolet
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Boris Chayer
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Markham, ON, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada
| | - Anton Volniansky
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada
| | - Damien Olivié
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada
| | | | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Bich N Nguyen
- Service of Pathology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - An Tang
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada; Laboratory of Clinical Image Processing, CRCHUM, Montréal, QC, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada.
| |
Collapse
|
17
|
Roy T, Guddati MN. Full waveform inversion for arterial viscoelasticity. Phys Med Biol 2023; 68. [PMID: 36753775 PMCID: PMC10124368 DOI: 10.1088/1361-6560/acba7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Objective. Arterial viscosity is emerging as an important biomarker, in addition to the widely used arterial elasticity. This paper presents an approach to estimate arterial viscoelasticity using shear wave elastography (SWE).Approach. While dispersion characteristics are often used to estimate elasticity from SWE data, they are not sufficiently sensitive to viscosity. Driven by this, we develop a full waveform inversion (FWI) methodology, based on directly matching predicted and measured wall velocity in space and time, to simultaneously estimate both elasticity and viscosity. Specifically, we propose to minimize an objective function capturing the correlation between measured and predicted responses of the anterior wall of the artery.Results. The objective function is shown to be well-behaving (generally convex), leading us to effectively use gradient optimization to invert for both elasticity and viscosity. The resulting methodology is verified with synthetic data polluted with noise, leading to the conclusion that the proposed FWI is effective in estimating arterial viscoelasticity.Significance. Accurate estimation of arterial viscoelasticity, not just elasticity, provides a more precise characterization of arterial mechanical properties, potentially leading to a better indicator of arterial health.
Collapse
Affiliation(s)
- Tuhin Roy
- North Carolina State University, Raleigh, NC, United States of America
| | - Murthy N Guddati
- North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
18
|
Sebastian JA, Strohm EM, Baranger J, Villemain O, Kolios MC, Simmons CA. Assessing engineered tissues and biomaterials using ultrasound imaging: In vitro and in vivo applications. Biomaterials 2023; 296:122054. [PMID: 36842239 DOI: 10.1016/j.biomaterials.2023.122054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/24/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Quantitative assessment of the structural, functional, and mechanical properties of engineered tissues and biomaterials is fundamental to their development for regenerative medicine applications. Ultrasound (US) imaging is a non-invasive, non-destructive, and cost-effective technique capable of longitudinal and quantitative monitoring of tissue structure and function across centimeter to sub-micron length scales. Here we present the fundamentals of US to contextualize its application for the assessment of biomaterials and engineered tissues, both in vivo and in vitro. We review key studies that demonstrate the versatility and broad capabilities of US for clinical and pre-clinical biomaterials research. Finally, we highlight emerging techniques that further extend the applications of US, including for ultrafast imaging of biomaterials and engineered tissues in vivo and functional monitoring of stem cells, organoids, and organ-on-a-chip systems in vitro.
Collapse
Affiliation(s)
- Joseph A Sebastian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Canada.
| | - Eric M Strohm
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Jérôme Baranger
- Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Olivier Villemain
- Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute of Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Xiao Y, Jin J, Yuan Y, Zhao Y, Li D. A New Estimation Scheme for Improving the Performance of Shear Wave Elasticity Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:289-308. [PMID: 36283938 DOI: 10.1016/j.ultrasmedbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Shear wave velocity (SWV) reconstruction based on time-of-flight (TOF) is widely adopted to realize shear wave elasticity imaging (SWEI). It typically breaks down the reconstruction of a SWV image into many kernels and treats them independently. We hypothesized that information exchange among kernels improves the performance of SWEI. Therefore, we propose the approach of iterative re-weighted least squares based on inter-kernel communication (IKC-IRLS). We also hypothesized that time-to-peak (TTP) is superior to cross-correlation (CC) in visualizing small targets because TTP uses higher shear wave frequencies than CC. To examine the hypotheses, IKC-IRLS was combined with TTP data and compared with four established methods. The five methods were tested by imaging several small-size stiff targets (2.5, 4.0 and 6.4 mm in diameter) using different kernel sizes in the simulation and real experiments. The results indicate that the IKC-IRLS approach can mitigate speckle noise and is robust to TTP outliers. Consequently, the proposed method achieves the highest contrast-to-noise ratio and the lowest mean absolute percentage error of target in almost all tested cases.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Jing Jin
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China.
| | - Yu Yuan
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Yue Zhao
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Dandan Li
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| |
Collapse
|
20
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
21
|
Götschi T, Schärer Y, Gennisson JL, Snedeker JG. Investigation of the relationship between tensile viscoelasticity and unloaded ultrasound shear wave measurements in ex vivo tendon. J Biomech 2023; 146:111411. [PMID: 36509025 DOI: 10.1016/j.jbiomech.2022.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mechanical properties of biological tissues are of key importance for proper function and in situ methods for mechanical characterization are sought after in the context of both medical diagnosis as well as understanding of pathophysiological processes. Shear wave elastography (SWE) and accompanying physical modelling methods provide valid estimates of stiffness in quasi-linear viscoelastic, isotropic tissue but suffer from limitations in assessing non-linear viscoelastic or anisotropic material, such as tendon. Indeed, mathematical modelling predicts the longitudinal shear wave velocity to be unaffected by the tensile but rather the shear viscoelasticity. Here, we employ a heuristic experimental testing approach to the problem to assess the most important potential confounders, namely tendon mass density and diameter, and to investigate associations between tendon tensile viscoelasticity with shear wave descriptors. Small oscillatory testing of animal flexor tendons at two baseline stress levels over a large frequency range comprehensively characterized tensile viscoelastic behavior. A broad set of shear wave descriptors was retrieved on the unloaded tendon based on high frame-rate plane wave ultrasound after applying an acoustic deformation impulse. Tensile modulus and strain energy dissipation increased logarithmically and linearly, respectively, with the frequency of the applied strain. Shear wave descriptors were mostly unaffected by tendon diameter but were highly sensitive to tendon mass density. Shear wave group and phase velocity showed no association with tensile elasticity or strain rate-stiffening but did show an association with tensile strain energy dissipation. The longitudinal shear wave velocity may not characterize tensile elasticity but rather tensile viscous properties of transversely isotropic collagenous tissues.
Collapse
Affiliation(s)
- Tobias Götschi
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland.
| | | | - Jean-Luc Gennisson
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 ORSAY, France
| | - Jess G Snedeker
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| |
Collapse
|
22
|
Naganuma H, Ishida H. Factors other than fibrosis that increase measured shear wave velocity. World J Gastroenterol 2022; 28:6512-6521. [PMID: 36569278 PMCID: PMC9782834 DOI: 10.3748/wjg.v28.i46.6512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Shear wave elastography (SWE) is now becoming an indispensable diagnostic tool in the routine examination of liver diseases. In particular, accuracy is required for shear wave propagation velocity measurement, which is directly related to diagnostic accuracy. It is generally accepted that the liver shear wave propagation velocity reflects the degree of fibrosis, but there are still few reports on other factors that increase the shear wave propagation velocity. In this study, we reviewed such factors in the literature and examined their mechanisms. Current SWE measures propagation velocity based on the assumption that the medium has a homogeneous structure, uniform density, and is purely elastic. Otherwise, the measurement is subject to error. The other (confounding) factors that we routinely experience are primarily: (1) Conditions that appear to increase the viscous component; and (2) Conditions that appear to increase tissue density. Clinically, the former includes acute hepatitis, congested liver, biliary obstruction, etc, and the latter includes diffuse infiltration of malignant cells, various storage diseases, tissue necrosis, etc. In any case, it is important to evaluate SWE in the context of the entire clinical picture.
Collapse
Affiliation(s)
- Hiroko Naganuma
- Department of Gastroenterology, Yokote Municipal Hospital, Yokote 013-8602, Japan
| | - Hideaki Ishida
- Department of Gastroenterology, Akita Red Cross Hospital, Akita 010-1495, Japan
| |
Collapse
|
23
|
Kijanka P, Urban MW. Improved two-point frequency shift power method for measurement of shear wave attenuation. ULTRASONICS 2022; 124:106735. [PMID: 35390627 PMCID: PMC9249559 DOI: 10.1016/j.ultras.2022.106735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Quantitative assessment of mechanical properties of biological soft tissues is frequently evaluated using a noninvasive modality, called ultrasound shear wave elastography (SWE). SWE typically exerts an acoustic radiation force (ARF) to produce shear waves propagating in the lateral direction for which velocities and attenuations are measured. The tissue viscoelasticity is commonly studied by investigating the shear wave phase velocity curves. Viscoelastic tissue properties can also be characterized through utilizing various shear wave attenuation techniques. In this study, we propose an improved method for measuring the shear wave attenuation, called two-point frequency shift power (2P-FSP), which is an improved version of the two-point frequency shift (2P-FS) method. The technique is fully data driven and does not use a rheological model for mathematical modeling. The 2P-FSP method utilizes the power spectra frequency shift of shear waves measured at two spatial positions, which provides robustness to noise. The conceptual basis for the 2P-FSP is provided and tested with numerical and experimental data. We investigated how the location of the first signal and the distance interval between the two locations influence the shear wave attenuation measurement in the 2P-FSP technique. We utilized the 2P-FSP method on numerical phantom data generated using a finite-difference-based method in tissue-mimicking viscoelastic media. Moreover, we tested the 2P-FSP method with data from custom-made tissue-mimicking viscoelastic phantom experiments, and ex vivo porcine liver. We compared results from the proposed technique with results from 2P-FS and analytical values in the case of simulations. The results showed that the 2P-FSP method provides improved results over the 2P-FS technique for lower signal-to-noise ratio (SNR) and locations farther from the push location considered, and can be used to measure attenuation of viscoelastic soft tissues.
Collapse
Affiliation(s)
- Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Yazdani L, Bhatt M, Rafati I, Tang A, Cloutier G. The Revisited Frequency-Shift Method for Shear Wave Attenuation Computation and Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2061-2074. [PMID: 35404815 DOI: 10.1109/tuffc.2022.3166448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) shear wave (SW) elastography has been widely studied and implemented on clinical systems to assess the elasticity of living organs. Imaging of SW attenuation reflecting viscous properties of tissues has received less attention. A revisited frequency shift (R-FS) method is proposed to improve the robustness of SW attenuation imaging. Performances are compared with the FS method that we originally proposed and with the two-point frequency shift (2P-FS) and attenuation measuring US SW elastography (AMUSE) methods. In the proposed R-FS method, the shape parameter of the gamma distribution fitting SW spectra is assumed to vary with distance, in contrast to FS. Second, an adaptive random sample consensus (A-RANSAC) line fitting method is used to prevent outlier attenuation values in the presence of noise. Validation was made on ten simulated phantoms with two viscosities (0.5 and 2 Pa [Formula: see text]) and different noise levels (15 to -5 dB), two experimental homogeneous gel phantoms, and six in vivo liver acquisitions on awake ducks (including three normal and three fatty duck livers). According to the conducted experiments, R-FS revealed mean reductions in coefficients of variation (CV) of 62.6% on simulations, 62.5% with phantoms, and 62.3% in vivo compared with FS. Corresponding reductions compared with 2P-FS were 45.4%, 77.1%, and 62.0%, respectively. Reductions in normalized root-mean-square errors for simulations were 63.9% and 48.7% with respect to FS and 2P-FS, respectively.
Collapse
|
25
|
Parker KJ. Power laws prevail in medical ultrasound. Phys Med Biol 2022; 67:10.1088/1361-6560/ac637e. [PMID: 35366658 PMCID: PMC9118335 DOI: 10.1088/1361-6560/ac637e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Major topics in medical ultrasound rest on the physics of wave propagation through tissue. These include fundamental treatments of backscatter, speed of sound, attenuation, and speckle formation. Each topic has developed its own rich history, lexicography, and particular treatments. However, there is ample evidence to suggest that power law relations are operating at a fundamental level in all the basic phenomena related to medical ultrasound. This review paper develops, from literature over the past 60 years, the accumulating theoretical basis and experimental evidence that point to power law behaviors underlying the most important tissue-wave interactions in ultrasound and in shear waves which are now employed in elastography. The common framework of power laws can be useful as a coherent overview of topics, and as a means for improved tissue characterization.
Collapse
Affiliation(s)
- K J Parker
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| |
Collapse
|
26
|
Ex Vivo Evaluation of Mechanical Anisotropic Tissues with High-Frequency Ultrasound Shear Wave Elastography. SENSORS 2022; 22:s22030978. [PMID: 35161728 PMCID: PMC8838528 DOI: 10.3390/s22030978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 01/01/2023]
Abstract
The use of imaging devices to assess directional mechanics of tissues is highly desirable. This is because the directional mechanics depend on fiber orientation, and altered directional mechanics are closely related to the pathological status of tissues. However, measuring directional mechanics in tissues with high-stiffness is challenging due to the difficulty of generating localized displacement in these tissues using acoustic radiation force, a general method for generating displacement in ultrasound-based elastography. In addition, common ultrasound probes do not provide rotational function, which makes the measurement of directional mechanics inaccurate and unreliable. Therefore, we developed a high-frequency ultrasound mechanical wave elastography system that can accommodate a wide range of tissue stiffness and is also equipped with a motorized rotation stage for precise imaging of directional mechanics. A mechanical shaker was applied to the elastography system to measure tissues with high-stiffness. Phantom and ex vivo experiments were performed. In the phantom experiments, the lateral and axial resolution of the system were determined to be 144 μm and 168 μm, respectively. In the ex vivo experiments, we used swine heart and cartilage, both of which are considered stiff. The elastography system allows us to acquire the directional mechanics with high angular resolution in the heart and cartilage. The results demonstrate that the developed elastography system is capable of imaging a wide range of tissues and has high angular resolution. Therefore, this system might be useful for the diagnostics of mechanically anisotropic tissues via ex vivo tests.
Collapse
|
27
|
Urbańska MA, Kolenderska SM, Rodrigues SA, Thakur SS, Vanholsbeeck F. Broadband-excitation-based mechanical spectroscopy of highly viscous tissue-mimicking phantoms. OPTICS EXPRESS 2022; 30:603-618. [PMID: 35201234 DOI: 10.1364/oe.445259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Standard rheometers assess mechanical properties of viscoelastic samples up to 100 Hz, which often hinders the assessment of the local-scale dynamics. We demonstrate that high-frequency analysis can be achieved by inducing broadband waves and monitoring their media-dependent propagation using optical coherence tomography. Here, we present a new broadband wave analysis based on two-dimensional Fourier transformation. We validated this method by comparing the mechanical parameters to monochromatic excitation and a standard oscillatory test data. Our method allows for high-frequency mechanical spectroscopy, which could be used to investigate the local-scale dynamics of different biological tissues and the influence of diseases on their microstructure.
Collapse
|
28
|
Zvietcovich F, Larin KV. Wave-based optical coherence elastography: The 10-year perspective. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012007. [PMID: 35187403 PMCID: PMC8856668 DOI: 10.1088/2516-1091/ac4512] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
After 10 years of progress and innovation, optical coherence elastography (OCE) based on the propagation of mechanical waves has become one of the major and the most studied OCE branches, producing a fundamental impact in the quantitative and nondestructive biomechanical characterization of tissues. Preceding previous progress made in ultrasound and magnetic resonance elastography; wave-based OCE has pushed to the limit the advance of three major pillars: (1) implementation of novel wave excitation methods in tissues, (2) understanding new types of mechanical waves in complex boundary conditions by proposing advance analytical and numerical models, and (3) the development of novel estimators capable of retrieving quantitative 2D/3D biomechanical information of tissues. This remarkable progress promoted a major advance in answering basic science questions and the improvement of medical disease diagnosis and treatment monitoring in several types of tissues leading, ultimately, to the first attempts of clinical trials and translational research aiming to have wave-based OCE working in clinical environments. This paper summarizes the fundamental up-to-date principles and categories of wave-based OCE, revises the timeline and the state-of-the-art techniques and applications lying in those categories, and concludes with a discussion on the current challenges and future directions, including clinical translation research.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204
| | - Kirill V. Larin
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204,
| |
Collapse
|
29
|
Chintada BR, Rau R, Goksel O. Nonlinear Characterization of Tissue Viscoelasticity With Acoustoelastic Attenuation of Shear Waves. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:38-53. [PMID: 34398752 DOI: 10.1109/tuffc.2021.3105339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shear-wave elastography (SWE) measures shear-wave speed (SWS), which is related to the underlying shear modulus of soft tissue. SWS in soft tissue changes depending on the amount of external strain that soft tissue is subjected to due to the acoustoelastic (AE) phenomenon. In the literature, variations of SWS as a function of applied uniaxial strain were used for nonlinear characterization, assuming soft tissues to be elastic, although soft tissues are indeed viscoelastic in nature. Hence, nonlinear characterization using SWS alone is insufficient. In this work, we use SWS together with shear-wave attenuation (SWA) during incremental quasi-static compressions in order to derive biomechanical characterization based on the AE theory in terms of well-defined storage and loss moduli. As part of this study, we also quantify the effect of applied strain on measurements of SWS and SWA since such confounding effects need to be taken into account when using SWS and/or SWA, e.g., for staging a disease state, while such effects can also serve as an additional imaging biomarker. Our results from tissue-mimicking phantoms with varying oil percentages and ex vivo porcine liver experiments demonstrate the feasibility of our proposed methods. In both experiments, SWA was observed to decrease with applied strain. For 10% compression in ex vivo livers, shear-wave attenuation decreased, on average, by 28% (93 Np/m), while SWS increased, on average, by 20% (0.26 m/s).
Collapse
|
30
|
Sarvazyan AP, Rudenko OV, Fatemi M. Acoustic Radiation Force: A Review of Four Mechanisms for Biomedical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3261-3269. [PMID: 34520353 DOI: 10.1109/tuffc.2021.3112505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiation force is a universal phenomenon in any wave motion where the wave energy produces a static or transient force on the propagation medium. The theory of acoustic radiation force (ARF) dates back to the early 19th century. In recent years, there has been an increasing interest in the biomedical applications of ARF. Following a brief history of ARF, this article describes a concise theory of ARF under four physical mechanisms of radiation force generation in tissue-like media. These mechanisms are primarily based on the dissipation of acoustic energy of propagating waves, the reflection of the incident wave, gradients of the compressional wave speeds, and the spatial variations of energy density in standing acoustic waves. Examples describing some of the practical applications of ARF under each mechanism are presented. This article concludes with a discussion on selected ideas for potential future applications of ARF in biomedicine.
Collapse
|
31
|
Baltacioglu NA, Tureli D. Diminished Sphenous Compartment Connective Tissue Elasticity has Little Impact on Low Grade Venous Insufficiency: An Ultrasound Shearwave Elastography Study. Curr Med Imaging 2021; 17:897-903. [PMID: 33966622 PMCID: PMC8811615 DOI: 10.2174/1573405617666210507122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/27/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Greater Saphenous Vein (GSV) courses within saphenous compartment, an adipose-filled space bound by fasciae provides structural support. Ultrasound Shear-Wave Elastography (SWE) provides objective and quantitative data on tissue shear elasticity modulus. OBJECTIVE This study aims to analyze possible associations between early stage GSV insufficiency and saphenous intracompartmental SWE measurements. METHODS Two-hundred consecutive patients, ages 22 to 81 (mean=44.3) years, with venous insufficiency symptoms underwent Doppler and SWE examinations. Patients had no visible or palpable sign of venous disease or had telangiectasia and reticular veins only. Analyses regarding patient age, gender, presence of venous insufficiency of GSV proper and intracompartmental connective tissue elasticity were performed. RESULTS Ninety-six patients had Doppler evidence for either bilateral or unilateral insufficiency of GSV proper at mid-thigh level. Intracompartmental elasticity of patients with venous insufficiency (mean=4.36±2.24 kilopascals; range 1.55 to 10.44 kPa) did not differ significantly from those with normal veins (mean=4.82±2.61 kPa; range 2.20 to 12.65 kPa) (p=0.231). No threshold for predicting the presence of venous insufficiency could be determined. Neither were there any correlations between age, gender and intracompartmental elasticity. In patients with unilateral insufficiency, however, elastography values around insufficient veins were significantly lower compared to contralateral normal GSV (p<0.001). CONCLUSION Many intrinsic and patient factors affect intracompartmental connective tissue elastography measurements; thus, cut-off values obtained from specific populations have limited generalizability. Nevertheless, statistically significant intrapatient differences of intracompartmental elasticity among diseased and normal saphenous veins indicate that lack of elastic support from surrounding connective tissues contributes to venous insufficiency in early stages.
Collapse
Affiliation(s)
| | - Derya Tureli
- Department of Radiology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
32
|
Li H, Flé G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, Bosio G, Rafati I, Cloutier G. Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation. FRONTIERS IN PHYSICS 2021; 9. [DOI: 10.3389/fphy.2021.666192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.
Collapse
|
33
|
Kijanka P, Urban MW. Phase Velocity Estimation With Expanded Bandwidth in Viscoelastic Phantoms and Tissues. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1352-1362. [PMID: 33502973 PMCID: PMC8087630 DOI: 10.1109/tmi.2021.3054950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound shear wave elastography (SWE) is a technique used to measure mechanical properties to evaluate healthy and pathological soft tissues. SWE typically employs an acoustic radiation force (ARF) to generate laterally propagating shear waves that are tracked in the spatiotemporal domains, and algorithms are used to estimate the wave velocity. The tissue viscoelasticity is often examined through analyzing the shear wave phase velocity dispersion curves, which is the variation of phase velocity with frequency or wavelength. A number of available methods to estimate dispersion exist, which can differ in resolution and variance. Moreover, most of these techniques reconstruct dispersion curves for a limited frequency band. In this work, we propose a novel method used for dispersion curve calculation. Our unique approach uses a generalized Stockwell transformation combined with a slant frequency-wavenumber analysis (GST-SFK). We tested the GST-SFK method on numerical phantom data generated using a finite-difference-based method in tissue-mimicking viscoelastic media. In addition, we evaluated the method on numerical shear wave motion data with different amounts of white Gaussian noise added. Additionally, we performed tests on data from custom-made tissue-mimicking viscoelastic phantom experiments, ex vivo porcine liver measurements, and in vivo liver tissue experiments. We compared results from our method with two other techniques used for estimating shear wave phase velocity: the two-dimensional Fourier transform (2D-FT) and the eigenvector (EV) method. Tests carried out revealed that the GST-SFK method provides dispersion curve estimates with lower errors over a wider frequency band in comparison to the 2D-FT and EV methods. In addition, the GST-SFK provides expanded bandwidth by a factor of two or more to be used for phase velocity estimation, which is meaningful for a tissue dispersion analysis in vivo.
Collapse
|
34
|
Vasconcelos L, Kijanka P, Urban MW. Viscoelastic parameter estimation using simulated shear wave motion and convolutional neural networks. Comput Biol Med 2021; 133:104382. [PMID: 33872971 DOI: 10.1016/j.compbiomed.2021.104382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
Ultrasound shear wave elastography (SWE) techniques have been very useful for the analysis of tissue rheological properties, but there are still obstacles for robust evaluation of viscoelastic tissue properties. In this proof-of-concept study, we investigate whether convolutional neural networks (CNN) are capable of retrieving the elasticity and viscosity parameters from simulated shear wave motion images. Staggered-grid finite difference simulations based on a Kelvin-Voigt rheological model were used to generate data for this study. The wave motion datasets were created using Kelvin-Voigt shear elasticity values ranging from 1 to 25 kPa, shear viscosities ranging from 0 to 10 Pa⋅s, and two different push profiles using f-numbers of 1 and 2. The CNN architectures, optimized using mean squared error loss, were then trained to retrieve a specific viscoelastic parameter. Both elasticity and viscosity values were successfully retrieved, with regression R2 values above 0.99 when correlating the estimated mechanical properties versus the true mechanical properties. The CNN performance was also compared to estimation of shear elasticity and viscosity from fitting dispersion curves estimated from two-dimensional Fourier transform analysis. The results demonstrated that the CNN models were robust to noise, vertical position and partially to f-number. The architecture was proven to be robust to multiple push profiles if trained properly. The CNN results showed higher accuracy over the full viscoelastic parameter range compared to the Fourier-based analysis. The overall results showed the CNNs' potential to be an alternative to complex mathematical analyses such as Fourier analysis and dispersion curve estimation used currently for shear wave viscoelastic parameter estimation.
Collapse
Affiliation(s)
- Luiz Vasconcelos
- Bioinformatics and Computational Biology, University of Minnesota, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Piotr Kijanka
- AGH University of Science and Technology, Krakow, Poland
| | | |
Collapse
|
35
|
Bhatt M, Yazdani L, Destrempes F, Allard L, Nguyen BN, Tang A, Cloutier G. Multiparametric in vivo ultrasound shear wave viscoelastography on farm-raised fatty duck livers: human radiology imaging applied to food sciences. Poult Sci 2021; 100:100968. [PMID: 33607316 PMCID: PMC7900601 DOI: 10.1016/j.psj.2020.12.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Nine mulard ducks that were being raised for foie gras (steatosis) production went through in vivo shear wave (SW) elastography imaging of their liver during the force-feeding period to investigate changes in liver tissue characteristics. A total of 4 imaging sessions at an interval of 3 to 4 d were conducted at the farm on each animal. Three ducks were sacrificed at the second, third, and fourth imaging sessions for histopathology analysis of all animals at these time points. Six SW elastography parameters were evaluated: SW speed, SW attenuation, SW dispersion, Young's modulus, viscosity, and shear modulus. Shear waves of different frequencies propagate with different phase velocities. Thus, SW speed and other dependent parameters such as Young's modulus, viscosity, and shear modulus were computed at 2 frequencies: 75 and 202 Hz. Each parameter depicted a statistically significant trend along the force-feeding process (P-values between 0.001 and 0.0001). The fat fraction of the liver increased over the 12-day period of feeding. All parameters increased monotonically over time at 75 Hz, whereas modal relations were seen at 202 Hz. Shear wave dispersion measured between 75 and 202 Hz depicted a plateau from day 5. Based on this validation, proposed imaging methods are aimed to be used in the future on naturally fed ducks and geese.
Collapse
Affiliation(s)
- Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9
| | - Ladan Yazdani
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9; Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada H3C 3J7
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9
| | - Louise Allard
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9
| | - Bich N Nguyen
- Service of Pathology, University of Montreal Hospital (CHUM), Montréal, Québec, Canada H2X 0C1
| | - An Tang
- Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada H3C 3J7; Laboratory of Medical Image Analysis, CRCHUM, Montréal, Québec, Canada H2X 0A9; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada H3T 1J4
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9; Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada H3C 3J7; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada H3T 1J4.
| |
Collapse
|
36
|
Kijanka P, Urban MW. Local Phase Velocity Based Imaging of Viscoelastic Phantoms and Tissues. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:389-405. [PMID: 31976887 PMCID: PMC7590236 DOI: 10.1109/tuffc.2020.2968147] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Assessment of soft tissue elasticity and viscosity is of interest in several clinical applications. In this study, we present the feasibility of the local phase velocity based imaging (LPVI) method to create images of phase velocity and viscoelastic parameters in viscoelastic tissue-mimicking materials and soft tissues. In viscoelastic materials, it is necessary to utilize wave-mode isolation using a narrow bandpass filter combined with a directional filter in order to robustly reconstruct phase velocity images with LPVI in viscoelastic media over a wide range of frequencies. A pair of sequential focused acoustic radiation force push beams, focused once on the left-hand side and once on the right-hand side of the probe, was used to produce broadband propagating shear waves. The local shear wave phase velocity is then recovered in the frequency domain for multiple frequencies, for both acquired data sets. Then, a 2-D shear wave velocity map is reconstructed by combining maps from two separate acquisitions. By testing the method on simulated data sets and performing in vitro phantom and in vivo liver tissue experiments, we show the ability of the proposed technique to generate shear wave phase velocity maps at various frequencies in viscoelastic materials. Moreover, a nonlinear least-squares problem is solved in order to locally estimate elasticity and viscosity parameters. The LPVI method with added directional and wavenumber filters can produce phase velocity images, which can be used to characterize the viscoelastic materials.
Collapse
|
37
|
Poul SS, Parker KJ. Fat and fibrosis as confounding cofactors in viscoelastic measurements of the liver. Phys Med Biol 2021; 66:045024. [PMID: 33348325 DOI: 10.1088/1361-6560/abd593] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Elastography provides significant information on staging of fibrosis in patients with liver disease and may be of some value in assessing steatosis. However, there remain questions as to the role of steatosis and fibrosis as cofactors influencing the viscoelastic measurements of liver tissues, particularly shear wave speed (SWS) and shear wave attenuation (SWA). In this study, by employing the theory of composite elastic media as well as two independent experimental measurements on oil-in-gelatin phantoms and also finite element simulations, it is consistently shown that fat and fibrosis jointly influence the SWS and SWA measurements. At a constant level of fat, fibrosis stages can influence the SWA by factors of 2-4. Moreover, the rate of increase in SWA with increasing fat is strongly influenced by the stages of fibrosis; softer background cases (low fibrosis stages) have higher rate of SWA increase with fat than those with stiffer moduli (higher fibrosis stages). Meanwhile, SWS results are influenced by the presence of fat, however the degree of variability is more subtle. The results indicate the importance of jointly considering fat and fibrosis as contributors to SWS and SWA measurements in complex liver tissues and in the design and interpretation of clinical trials.
Collapse
Affiliation(s)
- S S Poul
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Box 270132, Rochester, NY, United States of America
| | | |
Collapse
|
38
|
Basavarajappa L, Baek J, Reddy S, Song J, Tai H, Rijal G, Parker KJ, Hoyt K. Multiparametric ultrasound imaging for the assessment of normal versus steatotic livers. Sci Rep 2021; 11:2655. [PMID: 33514796 PMCID: PMC7846566 DOI: 10.1038/s41598-021-82153-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Liver disease is increasing in prevalence across the globe. We present here a multiparametric ultrasound (mpUS) imaging approach for assessing nonalcoholic fatty liver disease (NALFD). This study was performed using rats (N = 21) that were fed either a control or methionine and choline deficient (MCD) diet. A mpUS imaging approach that includes H-scan ultrasound (US), shear wave elastography, and contrast-enhanced US measurements were then performed at 0 (baseline), 2, and 6 weeks. Thereafter, animals were euthanized and livers excised for histological processing. A support vector machine (SVM) was used to find a decision plane that classifies normal and fatty liver conditions. In vivo mpUS results from control and MCD diet fed animals reveal that all mpUS measures were different at week 6 (P < 0.05). Principal component analysis (PCA) showed that the H-scan US data contributed the highest percentage to the classification among the mpUS measurements. The SVM resulted in 100% accuracy for classification of normal and high fat livers and 92% accuracy for classification of normal, low fat, and high fat livers. Histology findings found considerable steatosis in the MCD diet fed animals. This study suggests that mpUS examinations have the potential to provide a comprehensive estimation of the main components of early stage NAFLD.
Collapse
Affiliation(s)
- Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, BSB 13.929, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Jihye Baek
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Shreya Reddy
- Department of Bioengineering, University of Texas at Dallas, BSB 13.929, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Jane Song
- Department of Bioengineering, University of Texas at Dallas, BSB 13.929, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Haowei Tai
- Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Girdhari Rijal
- Department of Medical Laboratory Sciences, Tarleton State University, Forth Worth, TX, USA
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, BSB 13.929, 800 W Campbell Rd, Richardson, TX, 75080, USA. .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Kijanka P, Urban MW. Dispersion curve calculation in viscoelastic tissue-mimicking materials using non-parametric, parametric, and high-resolution methods. ULTRASONICS 2021; 109:106257. [PMID: 32980784 PMCID: PMC7850297 DOI: 10.1016/j.ultras.2020.106257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 05/20/2023]
Abstract
Ultrasound shear wave elastography is a modality used for noninvasive, quantitative evaluation of soft tissue mechanical properties. A common way of exploring the tissue viscoelasticity is through analyzing the shear wave velocity dispersion curves. The variation of phase velocity with frequency or wavelength is called the dispersion curve. An increase of the available spectrum to be used for phase velocity estimation is meaningful for a tissue dispersion analysis in vivo. A number of available methods for dispersion relation estimation exist which can give diffuse results due the presence of noise in the measured data. In this work we compare six selected methods used for dispersion curve calculation in viscoelastic materials. Non-parametric, parametric and high-resolution methods were examined and compared. We tested selected methods on digital phantom data created using finite-difference-based method in tissue-mimicking viscoelastic media as well as on the experimental custom tissue-mimicking phantoms. In addition, we evaluated the algorithms with different levels of added white Gaussian noise to the shear wave particle velocity from numerical phantoms. Tests conducted showed that more advanced methods can offer better frequency resolution, and less variance than the fast Fourier transform. In addition, the non-parametric Blackman-Tukey approach exhibits similar performance and can be interchangeably used for shear wave phase velocity dispersion curves calculation.
Collapse
Affiliation(s)
- Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Wang X, Geng Y, Han D, Lu M, Li R, Li Y, Zhang Q, Wan M. Viscoelastic characterization of HIFU ablation with shear wave by using K-space analysis combined with model-fitting correction method. ULTRASONICS 2020; 108:106179. [PMID: 32504988 DOI: 10.1016/j.ultras.2020.106179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
The viscoelastic properties of tissues can reflect human physiological and pathological conditions. During and after the high-intensity focused ultrasound (HIFU) treatment, measuring the viscoelasticity of HIFU ablated tissue is important for therapy evaluation. Two-dimensional Fourier transform (2DFT) method has been reported to quantify elasticity and viscosity. However, a deviation is induced by under-sampling in practical application. This work proposes an approach based on the convolution theorem and model fitting to solve the finite spatial data problem. A model using the convolution theorem was constructed, and mean-square error (MSE) was calculated to determine the optimal fitting between the model and experimental data. For validation, HIFU therapeutic experiments were conducted in polyacrylamide-bovine serum (BAS) transparent tissue-mimicking phantoms. This approach was used to quantify the viscoelasticity of HIFU ablation and untreated phantoms. Acoustic-radiation-force (ARF) shear wave was generated by the same HIFU therapeutic transducer, and laser Doppler vibrometer (LDV) was used for the high-resolution measurement of shear wave signals. Results suggest that the shear elasticity and viscosity of untreated phantoms are generally smaller than those of HIFU ablation. Thus, the proposed method may be helpful for HIFU treatment monitoring.
Collapse
Affiliation(s)
- Xuan Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Yizhe Geng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Dan Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Mingzhu Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China.
| | - Ruixin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Yujiao Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Quan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
41
|
Ormachea J, Parker KJ. Comprehensive Viscoelastic Characterization of Tissues and the Inter-relationship of Shear Wave (Group and Phase) Velocity, Attenuation and Dispersion. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3448-3459. [PMID: 32988669 DOI: 10.1016/j.ultrasmedbio.2020.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
We report shear wave phase and group velocity, dispersion and attenuation in oil-in-gelatin viscoelastic phantoms and in vivo liver data. Moreover, we measured the power law coefficient from each dispersion curve and used it, together with the shear wave velocity, to calculate an approximate value for attenuation that agrees with independent attenuation measurements. Results in phantoms exhibit good agreement for all parameters with respect to independent mechanical measurements. For in vivo data, the livers of 20 patients were scanned. Results were compared with pathology scores obtained from liver biopsies. Across these cases, increases in shear wave dispersion and attenuation were related to increased steatosis score. It was found that shear wave dispersion and attenuation are experimentally linked, consistent with simple predictions based on the rheology of tissues, and can be used individually or jointly to assess tissue viscosity. Thus, this study indicates the possible utility of using shear wave dispersion and attenuation to non-invasively and quantitatively assess steatosis.
Collapse
Affiliation(s)
- Juvenal Ormachea
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
42
|
Rus G, Faris IH, Torres J, Callejas A, Melchor J. Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2379. [PMID: 32331295 PMCID: PMC7219338 DOI: 10.3390/s20082379] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
The adoption of multiscale approaches by the biomechanical community has caused a major improvement in quality in the mechanical characterization of soft tissues. The recent developments in elastography techniques are enabling in vivo and non-invasive quantification of tissues' mechanical properties. Elastic changes in a tissue are associated with a broad spectrum of pathologies, which stems from the tissue microstructure, histology and biochemistry. This knowledge is combined with research evidence to provide a powerful diagnostic range of highly prevalent pathologies, from birth and labor disorders (prematurity, induction failures, etc.), to solid tumors (e.g., prostate, cervix, breast, melanoma) and liver fibrosis, just to name a few. This review aims to elucidate the potential of viscous and nonlinear elastic parameters as conceivable diagnostic mechanical biomarkers. First, by providing an insight into the classic role of soft tissue microstructure in linear elasticity; secondly, by understanding how viscosity and nonlinearity could enhance the current diagnosis in elastography; and finally, by compounding preliminary investigations of those elastography parameters within different technologies. In conclusion, evidence of the diagnostic capability of elastic parameters beyond linear stiffness is gaining momentum as a result of the technological and imaging developments in the field of biomechanics.
Collapse
Affiliation(s)
- Guillermo Rus
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit “ModelingNature” MNat UCE.PP2017.03, University of Granada, 18071 Granada, Spain
| | - Inas H. Faris
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Jorge Torres
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Antonio Callejas
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Juan Melchor
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit “ModelingNature” MNat UCE.PP2017.03, University of Granada, 18071 Granada, Spain
- Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
| |
Collapse
|
43
|
Tai H, Khairalseed M, Hoyt K. Adaptive attenuation correction during H-scan ultrasound imaging using K-means clustering. ULTRASONICS 2020; 102:105987. [PMID: 31477244 PMCID: PMC7036031 DOI: 10.1016/j.ultras.2019.105987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/29/2019] [Accepted: 08/22/2019] [Indexed: 05/29/2023]
Abstract
H-scan ultrasound (US) imaging (where the 'H' stands for Hermite) is a novel non-invasive, low cost and real-time technology. Like traditional US, H-scan US suffers from frequency-dependent attenuation that must be corrected to have acceptable image quality for tissue characterization. The goal of this research was to develop a novel attenuation correction method based on adaptive K-means clustering. To properly isolate these signals, a lateral moving window approach applied to adaptively adjust GH filters based on the changing of RF vector spectrums. Then the signal isolated via the same filter will be combined together via overlap-add technology to keep the information loss minimum. Experimental data was collected using a Verasonics 256 US scanner equipped with a L11-4v linear array transducer. In vivo data indicates that H-scan US imaging after adaptive attenuation correction can optimally re-scale the GH kernels and match to the changing spectrum undergoing attenuation (i.e. high frequency shift). This approach produces H-scan US images with more uniform spatial intensity and outperforms global attenuation correction strategies. Overall, this approach will improve the ability of H-scan US imaging to estimate acoustic scatterer size and will improve its clinical use for tissue characterization when imaging complex tissues.
Collapse
Affiliation(s)
- Haowei Tai
- Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX, USA; Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Mawia Khairalseed
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA; Department of Biomedical Engineering, Sudan University of Science and Technology and African City of Technology, Khartoum, Sudan
| | - Kenneth Hoyt
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
44
|
Kijanka P, Urban MW. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:483-496. [PMID: 31603777 PMCID: PMC7138459 DOI: 10.1109/tuffc.2019.2945620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound shear wave elastography (SWE) is an increasingly used noninvasive modality for quantitative evaluation of tissue mechanical properties. SWE typically uses an acoustic radiation force to produce laterally propagating shear waves that are tracked in the spatial and temporal domains, in order to obtain the wave velocity. One of the ways to study the viscoelasticity is through studying the shear wave phase velocity dispersion curves. Shear wave attenuation can be also characterized in viscoelastic tissues with methods that use multiple lateral data samples. In this article, we present an alternative method for measuring the shear wave attenuation without using a rheological model two-point frequency shift (2P-FS). The technique uses information related to the amplitude spectra FS of shear waves measured at only two lateral locations. The theoretical basis for the 2P-FS is derived and validated. We examined how the first signal position and the distance between the two locations affect the shear wave attenuation estimation in the 2P-FS method. We tested this new method on digital phantom data created using the local interaction simulation approach (LISA) in viscoelastic media. Moreover, we tested data acquired from custom-made tissue-mimicking viscoelastic phantom experiments and ex vivo porcine liver measurements. We compared results from the 2P-FS method with the other two techniques used for assessing a shear wave attenuation: the FS-based method and the attenuation-measuring ultrasound shear wave elastography (AMUSE) technique. In addition, we evaluated the 2P-FS algorithm with different levels of added white Gaussian noise to the shear wave particle velocity using numerical phantoms. Tests conducted showed that the 2P-FS method gives robust results based on only two measurements and can be used to measure attenuation of viscoelastic soft tissues.
Collapse
|
45
|
Trutna CA, Rouze NC, Palmeri ML, Nightingale KR. Measurement of Viscoelastic Material Model Parameters Using Fractional Derivative Group Shear Wave Speeds in Simulation and Phantom Data. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:286-295. [PMID: 31562083 PMCID: PMC7029806 DOI: 10.1109/tuffc.2019.2944126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
While ultrasound shear wave elastography originally focused on tissue stiffness under the assumption of elasticity, recent work has investigated the higher order, viscoelastic properties of the tissue. This article presents a method to use group shear wave speeds (gSWSs) at a series of derivative orders to characterize viscoelastic materials. This method uses a least squares fitting algorithm to match the experimental data to the calculated gSWS data, using an assumed material model and excitation geometry matched to the experimental imaging configuration. Building on a previous study that used particle displacement, velocity, and acceleration signals, this study extends the analysis to a continuous range of fractional derivative orders between 0 and 2. The method can be applied to any material model. Herein, material characterization was performed for three different two-parameter models and three different three-parameter models. This group speed-based method was applied to both shear wave simulations with ultrasonic tracking and experimental acquisitions in viscoelastic phantoms [similar to the Phase II Quantitative Imaging Biomarkers Alliance (QIBA) phantoms]. In both the cases, the group speed method produced more repeatable characterization overall than fitting the phase velocity results from the peak of the 2-D Fourier transform. Results suggest that the linear attenuation model is a better fit than the Voigt model for the viscoelastic QIBA phantoms.
Collapse
|
46
|
Shi X, Ye W, Liu F, Zhang R, Hou Q, Shi C, Yu J, Shi Y. Ultrasonic liver steatosis quantification by a learning-based acoustic model from a novel shear wave sequence. Biomed Eng Online 2019; 18:121. [PMID: 31864367 PMCID: PMC6925885 DOI: 10.1186/s12938-019-0742-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND An efficient and accurate approach to quantify the steatosis extent of liver is important for clinical practice. For the purpose, we propose a specific designed ultrasound shear wave sequence to estimate ultrasonic and shear wave physical parameters. The utilization of the estimated quantitative parameters is then studied. RESULTS Shear wave attenuation, shear wave absorption, elasticity, dispersion slope and echo attenuation were simultaneously estimated and quantified from the proposed novel shear wave sequence. Then, a regression tree model was utilized to learn the connection between the space represented by all the physical parameters and the liver fat proportion. MR mDIXON quantification was used as the ground truth for liver fat quantification. Our study included a total of 60 patients. Correlation coefficient (CC) with the ground truth were applied to mainly evaluate different methods for which the corresponding values were - 0.25, - 0.26, 0.028, 0.045, 0.46 and 0.83 for shear wave attenuation, shear wave absorption, elasticity, dispersion slope, echo attenuation and the learning-based model, respectively. The original parameters were extremely outperformed by the learning-based model for which the root mean square error for liver steatosis quantification is only 4.5% that is also state-of-the-art for ultrasound application in the related field. CONCLUSIONS Although individual ultrasonic and shear wave parameters were not perfectly adequate for liver steatosis quantification, a promising result can be achieved by the proposed learning-based acoustic model based on them.
Collapse
Affiliation(s)
- Xiudong Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen Ye
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fengjun Liu
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rengyin Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qinguo Hou
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chunzi Shi
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai, China. .,Key Laboratory of Medical Imaging, Computing and Computer Assisted Intervention, Shanghai, China.
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomater 2019; 97:74-92. [PMID: 31400521 DOI: 10.1016/j.actbio.2019.08.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
Abstract
Viscoelasticity of living tissues plays a critical role in tissue homeostasis and regeneration, and its implication in disease development and progression is being recognized recently. In this review, we first explored the state of knowledge regarding the potential application of tissue viscoelasticity in disease diagnosis. In order to better characterize viscoelasticity with local resolution and non-invasiveness, emerging characterization methods have been developed with the potential to be supplemented to existing facilities. To understand cellular responses to matrix viscoelastic behaviors in vitro, hydrogels made of natural polymers have been developed and the relationships between their molecular structure and viscoelastic behaviors, are elucidated. Moreover, how cells perceive the viscoelastic microenvironment and cellular responses including cell attachment, spreading, proliferation, differentiation and matrix production, have been discussed. Finally, some future perspective on an integrated mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses and biomaterial design are highlighted. STATEMENT OF SIGNIFICANCE: Tissue- or organ-scale viscoelastic behavior is critical for homeostasis, and the molecular basis and cellular responses of viscoelastic materials at micro- or nano-scale are being recognized recently. We summarized the potential applications of viscoelasticity in disease diagnosis enabled by emerging non-invasive characterization technologies, and discussed the underlying mechanism of viscoelasticity of hydrogels and current understandings of cell regulatory functions of them. With a growing understanding of the molecular basis of hydrogel viscoelasticity and recognition of its regulatory functions on cell behaviors, it is important to bring the clinical insights on how these characterization technologies and engineered materials may contribute to disease diagnosis and treatment. This review explains the basics in characterizing viscoelasticity with our hope to bridge the gap between basic research and clinical applications.
Collapse
|
48
|
Wood BG, Ireson ME, Urban MW, Nenadic IZD. Attenuation Measuring Ultrasound Shearwave Elastography as a Method for Evaluating Pancreatic Viscoelasticity. Biomed Phys Eng Express 2019; 5:10.1088/2057-1976/ab4c05. [PMID: 32123575 PMCID: PMC7051008 DOI: 10.1088/2057-1976/ab4c05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related fatalities as there are a limited number of tools to diagnose this disease in its early stages. Pancreatitis is characterized as an inflammation of the pancreatic tissue due to an excess amount of pancreatic enzymes remaining in the organ. Both of these diseases result in a stiffening of the tissue which makes them suitable for the use of elastography techniques as a diagnostic method. However, these methods typically assume that the tissue is purely elastic when biological tissue is inherently viscoelastic. The attenuation measuring ultrasound shear elastography (AMUSE) method, which measures both attenuation and shear wave velocity was used to characterize the viscoelasticity of pancreatic tissue. This method was tested in ex vivo normal porcine samples that were also stiffened in formalin and in vivo by conducting studies in healthy human subjects. Ex vivo testing showed ranges of phase velocity, group velocity, and phase attenuation values of 1.05 - 1.33 m/s, 0.83 - 1.12 m/s, and 183 - 210 Np/m. After immersing the ex vivo tissue in formalin there was a distinguishable difference between normal and stiffened tissue. This study produced percent difference ranges of phase velocity, group velocity, and phase attenuation from 0 to 100 minutes in formalin of 30.0% - 56.5%, 38.2% - 58.6%, and 55.8% - 64.8%, respectively. The ranges of phase velocity, group velocity, and phase attenuation results in human subjects were 1.53 - 1.60 m/s, 1.76 - 1.91 m/s, and 196 - 204 Np/m, respectively. These results were within a similar range reported by other elastography techniques. Further work with the AMUSE method in subjects with pancreatitis and cancer is needed to determine its effectiveness in showing a difference between healthy and diseased tissue in humans.
Collapse
Affiliation(s)
- Benjamin G Wood
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Mollie E Ireson
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Ivan Z D Nenadic
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
49
|
Sharma AK, Reis J, Oppenheimer DC, Rubens DJ, Ormachea J, Hah Z, Parker KJ. Attenuation of Shear Waves in Normal and Steatotic Livers. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:895-901. [PMID: 30685077 DOI: 10.1016/j.ultrasmedbio.2018.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Shear wave propagation in the liver has been a robust subject of research, with shear wave speed receiving the most attention. The correlation between increased shear wave speed and increased fibrosis in the liver has been established as a useful diagnostic tool. In comparison, the precise mechanisms of shear wave attenuation, and its relation to diseased states of the liver, are less well-established. This study focused on the hypothesis that steatosis adds a viscous (lossy) component to the liver, which increases shear wave attenuation. Twenty patients' livers were scanned with ultrasound and with induced shear wave propagation, and the resulting displacement profiles were analyzed using recently developed estimators to derive both the speed and attenuation of the shear waves within 6-cm2 regions of interest. The results were compared with pathology scores obtained from liver biopsies taken under ultrasound guidance. Across these cases, increases in shear wave attenuation were linked to increased steatosis score. This preliminary study supports the hypothesis and indicates the possible utility of the measurements for non-invasive and quantitative assessment of steatosis.
Collapse
Affiliation(s)
- Ashwani K Sharma
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Joseph Reis
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Daniel C Oppenheimer
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Deborah J Rubens
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Juvenal Ormachea
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | | | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
50
|
Yengul SS, Barbone PE, Madore B. Dispersion in Tissue-Mimicking Gels Measured with Shear Wave Elastography and Torsional Vibration Rheometry. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:586-604. [PMID: 30473175 PMCID: PMC6325023 DOI: 10.1016/j.ultrasmedbio.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 06/09/2023]
Abstract
Dispersion, or the frequency dependence of mechanical parameters, is a primary confounding factor in elastography comparisons. We present a study of dispersion in tissue-mimicking gels over a wide frequency band using a combination of ultrasound shear wave elastography (SWE), and a novel torsional vibration rheometry which allows independent mechanical measurement of SWE samples. Frequency-dependent complex shear modulus was measured in homogeneous gelatin hydrogels of two different bloom strengths while controlling for confounding factors such as temperature, water content and material aging. Furthermore, both techniques measured the same physical samples, thereby eliminating possible variation caused by batch-to-batch gel variation, sample geometry differences and boundary artifacts. The wide-band measurement, from 1 to 1800 Hz, captured a 30%-50% increase in the storage modulus and a nearly linear increase with frequency of the loss modulus. The magnitude of the variation suggests that accounting for dispersion is essential for meaningful comparisons between SWE implementations.
Collapse
Affiliation(s)
- Sanjay S Yengul
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Paul E Barbone
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|