1
|
Jia Y, McMichael N, Mokarzel P, Thompson B, Si D, Humphries T. Superiorization-inspired unrolled SART algorithm with U-Net generated perturbations for sparse-view and limited-angle CT reconstruction. Phys Med Biol 2022; 67. [PMID: 36541524 DOI: 10.1088/1361-6560/aca513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Objective.Unrolled algorithms are a promising approach for reconstruction of CT images in challenging scenarios, such as low-dose, sparse-view and limited-angle imaging. In an unrolled algorithm, a fixed number of iterations of a reconstruction method are unrolled into multiple layers of a neural network, and interspersed with trainable layers. The entire network is then trained end-to-end in a supervised fashion, to learn an appropriate regularizer from training data. In this paper we propose a novel unrolled algorithm, and compare its performance with several other approaches on sparse-view and limited-angle CT.Approach.The proposed algorithm is inspired by the superiorization methodology, an optimization heuristic in which iterates of a feasibility-seeking method are perturbed between iterations, typically using descent directions of a model-based penalty function. Our algorithm instead uses a modified U-net architecture to introduce the perturbations, allowing a network to learn beneficial perturbations to the image at various stages of the reconstruction, based on the training data.Main Results.In several numerical experiments modeling sparse-view and limited angle CT scenarios, the algorithm provides excellent results. In particular, it outperforms several competing unrolled methods in limited-angle scenarios, while providing comparable or better performance on sparse-view scenarios.Significance.This work represents a first step towards exploiting the power of deep learning within the superiorization methodology. Additionally, it studies the effect of network architecture on the performance of unrolled methods, as well as the effectiveness of the unrolled approach on both limited-angle CT, where previous studies have primarily focused on the sparse-view and low-dose cases.
Collapse
Affiliation(s)
- Yiran Jia
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Noah McMichael
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Pedro Mokarzel
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Brandon Thompson
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Dong Si
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Thomas Humphries
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| |
Collapse
|
2
|
Pan J, Zhang H, Wu W, Gao Z, Wu W. Multi-domain integrative Swin transformer network for sparse-view tomographic reconstruction. PATTERNS (NEW YORK, N.Y.) 2022; 3:100498. [PMID: 35755869 PMCID: PMC9214338 DOI: 10.1016/j.patter.2022.100498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Decreasing projection views to a lower X-ray radiation dose usually leads to severe streak artifacts. To improve image quality from sparse-view data, a multi-domain integrative Swin transformer network (MIST-net) was developed and is reported in this article. First, MIST-net incorporated lavish domain features from data, residual data, image, and residual image using flexible network architectures, where a residual data and residual image sub-network was considered as a data consistency module to eliminate interpolation and reconstruction errors. Second, a trainable edge enhancement filter was incorporated to detect and protect image edges. Third, a high-quality reconstruction Swin transformer (i.e., Recformer) was designed to capture image global features. The experimental results on numerical and real cardiac clinical datasets with 48 views demonstrated that our proposed MIST-net provided better image quality with more small features and sharp edges than other competitors.
Collapse
Affiliation(s)
- Jiayi Pan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Heye Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weifei Wu
- Department of Orthopedics, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, Hubei, China
| | - Zhifan Gao
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weiwen Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Computerized Tomography Image Features under the Reconstruction Algorithm in the Evaluation of the Effect of Ropivacaine Combined with Dexamethasone and Dexmedetomidine on Assisted Thoracoscopic Lobectomy. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4658398. [PMID: 34917307 PMCID: PMC8670017 DOI: 10.1155/2021/4658398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/05/2022]
Abstract
This research was aimed to study CT image features based on the backprojection filtering reconstruction algorithm and evaluate the effect of ropivacaine combined with dexamethasone and dexmedetomidine on assisted thoracoscopic lobectomy to provide reference for clinical diagnosis. A total of 110 patients undergoing laparoscopic resection were selected as the study subjects. Anesthesia induction and nerve block were performed with ropivacaine combined with dexamethasone and dexmedetomidine before surgery, and chest CT scan was performed. The backprojection image reconstruction algorithm was constructed and applied to patient CT images for reconstruction processing. The results showed that when the overlapping step size was 16 and the block size was 32 × 32, the running time of the algorithm was the shortest. The resolution and sharpness of reconstructed images were better than the Fourier transform analytical method and iterative reconstruction algorithm. The detection rates of lung nodules smaller than 6 mm and 6–30 mm (92.35% and 95.44%) were significantly higher than those of the Fourier transform analytical method and iterative reconstruction algorithm (90.98% and 87.53%; 88.32% and 90.87%) (P < 0.05). After anesthesia induction and lobectomy with ropivacaine combined with dexamethasone and dexmedetomidine, the visual analogue scale (VAS) decreased with postoperative time. The VAS score decreased to a lower level (1.76 ± 0.54) after five days. In summary, ropivacaine combined with dexamethasone and dexmedetomidine had better sedation and analgesia effects in patients with thoracoscopic lobectomy. CT images based on backprojection reconstruction algorithm had a high recognition accuracy for lung lesions.
Collapse
|
4
|
Hu D, Liu J, Lv T, Zhao Q, Zhang Y, Quan G, Feng J, Chen Y, Luo L. Hybrid-Domain Neural Network Processing for Sparse-View CT Reconstruction. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3011413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Humphries T, Wang BJ. Superiorized method for metal artifact reduction. Med Phys 2020; 47:3984-3995. [PMID: 32542688 DOI: 10.1002/mp.14332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Metal artifact reduction (MAR) is a challenging problem in computed tomography (CT) imaging. A popular class of MAR methods replace sinogram measurements that are corrupted by metal with artificial data, typically generated from some combination of interpolation along with other heuristics. While these "projection completion" approaches are successful in eliminating severe artifacts, secondary artifacts may be introduced by the artificial data. In this paper, we propose an approach which uses projection completion to generate a prior image, which is then incorporated into an iterative reconstruction algorithm based on the superiorization framework. The rationale is that the image produced by the iterative algorithm can inherit the desirable properties of the prior image, while also reducing secondary artifacts. METHODS The prior image is reconstructed using normalized metal artifact reduction (NMAR), a popular projection completion approach. The iterative algorithm is a modified version of the simultaneous algebraic reconstruction technique (SART), which reduces artifacts by incorporating a polyenergetic forward model, least-squares weighting, and superiorization. The penalty function used for superiorization is a weighted average between a total variation (TV) term and a term promoting similarity with the prior image, similar to penalty functions used in prior image constrained compressive sensing (PICCS). Because the prior is largely free of severe metal artifacts, these artifacts are discouraged from arising during iterative reconstruction; additionally, because the iterative approach uses the original projection data, it is able to recover information that is lost during the NMAR process. RESULTS We perform numerical experiments modeling a simple geometric object, as well as several more realistic scenarios such as metal pins, bilateral hip implants, and dental fillings placed within an anatomical phantom. The proposed iterative algorithm is largely successful at eliminating severe metal artifacts as well as secondary artifacts introduced by the NMAR process, especially lost edges of bone structures in the neighborhood of the metal regions. In one case modeling severe photon starvation, the NMAR algorithm is found to provide better results. CONCLUSION The proposed algorithm is effective in applying the superiorization methodology to the problem of MAR, providing better results than both NMAR and a purely total variation-based superiorization approach in nearly all cases.
Collapse
Affiliation(s)
- Thomas Humphries
- School of STEM, University of Washington Bothell, Box 358538, 18115 Campus Way NE, Bothell, WA, 98011, USA
| | - Boyang Jessie Wang
- School of STEM, University of Washington Bothell, Box 358538, 18115 Campus Way NE, Bothell, WA, 98011, USA
| |
Collapse
|
6
|
Schultze B, Censor Y, Karbasi P, Schubert KE, Schulte RW. An Improved Method of Total Variation Superiorization Applied to Reconstruction in Proton Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:294-307. [PMID: 30998460 PMCID: PMC8145778 DOI: 10.1109/tmi.2019.2911482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Previous work has shown that total variation superiorization (TVS) improves reconstructed image quality in proton computed tomography (pCT). The structure of the TVS algorithm has evolved since then and this paper investigated if this new algorithmic structure provides additional benefits to pCT image quality. Structural and parametric changes introduced to the original TVS algorithm included: (1) inclusion or exclusion of TV reduction requirement, (2) a variable number, N , of TV perturbation steps per feasibility-seeking iteration, and (3) introduction of a perturbation kernel . The structural change of excluding the TV reduction requirement check tended to have a beneficial effect for 3 ≤ N ≤ 6 and allows full parallelization of the TVS algorithm. Repeated perturbations per feasibility-seeking iterations reduced total variation (TV) and material dependent standard deviations for 3 ≤ N ≤ 6 . The perturbation kernel α , effectively equal to α = 0.5 in the original TVS algorithm, reduced TV and standard deviations as α was increased beyond α = 0.5 , but negatively impacted reconstructed relative stopping power (RSP) values for . The reductions in TV and standard deviations allowed feasibility-seeking with a larger relaxation parameter λ than previously used, without the corresponding increases in standard deviations experienced with the original TVS algorithm. This paper demonstrates that the modifications related to the evolution of the original TVS algorithm provide benefits in terms of both pCT image quality and computational efficiency for appropriately chosen parameter values.
Collapse
|
7
|
Reduction of beam hardening artifacts on real C-arm CT data using polychromatic statistical image reconstruction. Z Med Phys 2019; 30:40-50. [PMID: 31831207 DOI: 10.1016/j.zemedi.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/02/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE This work aims at the compensation of beam hardening artifacts by the means of an extended three-dimensional polychromatic statistical reconstruction to be applied for flat panel cone-beam CT. METHODS We implemented this reconstruction technique as being introduced by Elbakri et al. (2002) [1] for a multi-GPU system, assuming the underlying object consists of several well-defined materials. Furthermore, we assume one voxel can only contain an overlap of at most two materials, depending on its density value. Given the X-ray spectrum, the procedure enables to reconstruct the energy-dependent attenuation values of the volume. RESULTS We evaluated the method by using flat-panel cone-beam CT measurements of structures containing small metal objects and clinical head scan data. In comparison with the water-corrected filtered backprojection, as well as a maximum likelihood reconstruction with a consistency-based beam hardening correction, our method features clearly reduced beam hardening artifacts and a more accurate shape of metal objects. CONCLUSIONS Our multi-GPU implementation of the polychromatic reconstruction, which does not require any image pre-segmentation, clearly outperforms the standard reconstructions of objects, with respect to beam hardening even in the presence of metal objects inside the volume. However, remaining artifacts, caused mainly by the limited dynamic range of the detector, may have to be addressed in future work.
Collapse
|
8
|
Six N, De Beenhouwer J, Sijbers J. poly-DART: A discrete algebraic reconstruction technique for polychromatic X-ray CT. OPTICS EXPRESS 2019; 27:33670-33682. [PMID: 31878430 DOI: 10.1364/oe.27.033670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The discrete algebraic reconstruction technique (DART) is a tomographic method to reconstruct images from X-ray projections in which prior knowledge on the number of object materials is exploited. In monochromatic X-ray CT (e.g., synchrotron), DART has been shown to lead to high-quality reconstructions, even with a low number of projections or a limited scanning view. However, most X-ray sources are polychromatic, leading to beam hardening effects, which significantly degrade the performance of DART. In this work, we propose a new discrete tomography algorithm, poly-DART, that exploits sparsity in the attenuation values using DART and simultaneously accounts for the polychromatic nature of the X-ray source. The results show that poly-DART leads to a vastly improved segmentation on polychromatic data obtained from Monte Carlo simulations as well as on experimental data, compared to DART.
Collapse
|
9
|
Hsieh CJ, Huang TK, Hsieh TH, Chen GH, Shih KL, Chen ZY, Chen JC, Chu WC. Compressed sensing based CT reconstruction algorithm combined with modified Canny edge detection. Phys Med Biol 2018; 63:155011. [PMID: 29938686 DOI: 10.1088/1361-6560/aacece] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Given that the computed tomography (CT) reconstruction algorithm based on compressed sensing (CS) results in blurred edges, we propose a modified Canny operator that assists the CS algorithm to accurately capture an object's edge, to preserve and further enhance the contrasts in the reconstructed image, thereby improving image quality. We modified two procedures of the traditional Canny operator, namely non-maximum suppression and edge tracking by hysteresis according to the characteristics of low-dose CT reconstruction, and proposed two major modifications: double-response edge detection and directional edge tracking. The newly modified Canny operator was combined with the CS reconstruction algorithm to become an edge-enhanced CS (EECS). Both a 2D Shepp-Logan phantom and a 3D dental phantom were used to conduct reconstruction testing. Root-mean-square error, peak signal-to-noise ratio, and universal quality index were employed to verify the reconstruction results. Qualitative and quantitative results of EECS reconstruction showed its superiority over conventional CS or CS combined with different edge detection techniques, such as Laplacian, Prewitt, Sobel operators, etc. The experiments verified that the proposed modified Canny operator is able to effectively detect the edge location of an object during low-dose reconstruction, enabling EECS to reconstruct images with better quality than those produced by other algorithms.
Collapse
Affiliation(s)
- Chia-Jui Hsieh
- Department of Biomedical Engineering, National Yang-Ming University, 155 Linong Street, Sec. 2, Beitou, Taipei 11221, Taiwan, People's Republic of China. Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155 Linong Street, Sec. 2, Beitou, Taipei 11221, Taiwan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|