Machado IV, Dos Santos JRN, Januario MAP, Corrêa AG. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions.
ULTRASONICS SONOCHEMISTRY 2021;
78:105704. [PMID:
34454180 PMCID:
PMC8406036 DOI:
10.1016/j.ultsonch.2021.105704]
[Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 06/06/2023]
Abstract
Ultrasound is an essential technique to improve organic synthesis from the point of view of green chemistry, as it can promote better yields and selectivities, in addition to shorter reaction times when compared to the conventional methods. Heterogeneous catalysis is another pillar of sustainable chemistry being the recycling and reuse of the catalysts one of its great advantage. In the other hand, multicomponent reactions provide the synthesis of structurally diverse compounds, in a one-pot fashion, without isolation and purification of intermediates. Thus, the combination of these protocols has proved to be a powerful tool to obtain biologically active organic compounds with lower costs, time and energy consumption. Herein, we provide a comprehensive overview of advances on methods of organic synthesis that have been reported over the past ten years with focus on ultrasound-assisted multicomponent reactions under heterogeneous catalysis. In particular, we present pharmacologically important N- and O-heterocyclic compounds, considering their synthetic methods using green solvents, and catalyst recycling.
Collapse