1
|
Zietlow C, Lindner JKN. An applied noise model for scintillation-based CCD detectors in transmission electron microscopy. Sci Rep 2025; 15:3815. [PMID: 39885260 PMCID: PMC11782531 DOI: 10.1038/s41598-025-85982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Measurements in general are limited in accuracy by the presence of noise. This also holds true for highly sophisticated scintillation-based CCD cameras, as they are used in medical applications, astronomy or transmission electron microscopy. Further, signals measured with pixelated detectors are convolved with the inherent detector point spread function. The Poisson noise, arising from the quantized nature of the beam electrons, gets correlated by this convolution, which allows to reconstruct the detector PSF based on the Wiener-Khinchin theorem and the Pearson correlation coefficients under homogeneous illumination conditions. However, correlation also has a strong impact on the noise statistics of basic operations like the binning of signals, as it is usually done in electron energy-loss spectroscopy. Thus, this paper aims to give an insight into the different noise contributions occurring on such detectors, into their underlying statistics and their correlation. Detectors usually suffer from gain non-linearities and quantum efficiency deviations, which must be corrected for optimal results. All these operations influence the noise and are influenced by it, vice versa. In this work, we mathematically describe all these changes and show them experimentally. Methods on how to measure individual noise and correlation parameters are described allowing readers to implement routines for finding them. Sufficient knowledge on the noise of a measurement is not only crucial for classifying its quality and meaningfulness, but also allows for better post-processing operations like deconvolution, which is a common practice in spectroscopy to enhance signals.
Collapse
Affiliation(s)
- Christian Zietlow
- Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, 33098, Paderborn, Germany.
| | - Jörg K N Lindner
- Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, 33098, Paderborn, Germany
| |
Collapse
|
2
|
Michail C, Liaparinos P, Kalyvas N, Kandarakis I, Fountos G, Valais I. Radiation Detectors and Sensors in Medical Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:6251. [PMID: 39409289 PMCID: PMC11478476 DOI: 10.3390/s24196251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Medical imaging instrumentation design and construction is based on radiation sources and radiation detectors/sensors. This review focuses on the detectors and sensors of medical imaging systems. These systems are subdivided into various categories depending on their structure, the type of radiation they capture, how the radiation is measured, how the images are formed, and the medical goals they serve. Related to medical goals, detectors fall into two major areas: (i) anatomical imaging, which mainly concerns the techniques of diagnostic radiology, and (ii) functional-molecular imaging, which mainly concerns nuclear medicine. An important parameter in the evaluation of the detectors is the combination of the quality of the diagnostic result they offer and the burden of the patient with radiation dose. The latter has to be minimized; thus, the input signal (radiation photon flux) must be kept at low levels. For this reason, the detective quantum efficiency (DQE), expressing signal-to-noise ratio transfer through an imaging system, is of primary importance. In diagnostic radiology, image quality is better than in nuclear medicine; however, in most cases, the dose is higher. On the other hand, nuclear medicine focuses on the detection of functional findings and not on the accurate spatial determination of anatomical data. Detectors are integrated into projection or tomographic imaging systems and are based on the use of scintillators with optical sensors, photoconductors, or semiconductors. Analysis and modeling of such systems can be performed employing theoretical models developed in the framework of cascaded linear systems analysis (LCSA), as well as within the signal detection theory (SDT) and information theory.
Collapse
Affiliation(s)
| | | | | | - Ioannis Kandarakis
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece; (C.M.); (P.L.); (N.K.); (G.F.); (I.V.)
| | | | | |
Collapse
|
3
|
Yoshida E, Yamaya T. PET detectors with depth-of-interaction and time-of-flight capabilities. Radiol Phys Technol 2024; 17:596-609. [PMID: 38888821 DOI: 10.1007/s12194-024-00821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
In positron emission tomography (PET), measurements of depth-of-interaction (DOI) information and time-of-flight (TOF) information are important. DOI information reduces the parallax error, and TOF information reduces noise by measuring the arrival time difference of the annihilation photons. Historically, these have been studied independently, and there has been less implementation of both DOI and TOF capabilities because previous DOI detectors did not have good TOF resolution. However, recent improvements in PET detector performance have resulted in commercial PET scanners achieving a coincidence resolving time of around 200 ps, which result in an effect even for small objects. This means that TOF information can now be utilized even for a brain PET scanner, which also requires DOI information. Therefore, various methods have been proposed to obtain better DOI and TOF information. In addition, the cost of PET detectors is also an important factor to consider, since several hundred detectors are used per PET scanner. In this paper, we review the latest DOI-TOF detectors including the history of detector development. When put into practical use, these DOI-TOF detectors are expected to contribute to the improvement of imaging performance in brain PET scanners.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
4
|
Leem H, Choi Y, Jung J, Park K, Kim Y, Jung JH. Optimized TOF-PET detector using scintillation crystal array for brain imaging. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Trigila C, Roncali E. Optimization of scintillator-reflector optical interfaces for the LUT Davis model. Med Phys 2021; 48:4883-4899. [PMID: 34287943 PMCID: PMC8455426 DOI: 10.1002/mp.15109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/03/2021] [Accepted: 06/29/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Designing and optimizing scintillator-based gamma detector using Monte Carlo simulation is of great importance in nuclear medicine and high energy physics. In scintillation detectors, understanding the light transport in the scintillator and the light collection by the photodetector plays a crucial role in achieving high performance. Thus, accurately modeling them is critical. METHODS In previous works, we developed a model to compute crystal reflectance from the crystal 3D surface measurement and store it in look-up tables to be used in the Monte Carlo simulation software GATE. The relative light output comparison showed excellent agreement between simulations and experiments for both polished and rough surfaces in several configurations, that is, without and with reflector. However, when comparing them at the irradiation depth closest to the photodetector face, rough crystals with a reflector overestimated the predicted light output. Investigating the cause of this overestimation, we optimized the LUT algorithm to improve the reflectance computation accuracy, especially for rough surfaces. However, optical Monte Carlo simulations carried out with these newly generated LUTs still overestimate the light output. Based on previous observations, one probable cause is the erroneous assumption of perfect couplings between the reflector and crystal and between the crystal and photodetector, which likely results in an important overestimation of the light output compared to experimental values. In practice, several factors could degrade it. Here, we investigated possible suboptimal optical experimental configurations that could lead to a degraded light collection when using Teflon or ESR reflectors coupled to the crystal with air or grease. We generated look-up tables with a mixture of air and grease and showed the effect of three possible sources of light loss: the presence of a small gap between the crystal and the reflector edges close to the photodetector face, the infiltration of grease in the crystal-reflector coupling, and the presence of inhomogeneities in the photodetector-crystal interface. RESULTS The strongest effect is linked to the presence of a small gap of grease between the edges of the reflector material and the crystal (light loss of 10%-12% for 0.2 mm gap). The optical grease infiltrating the crystal-reflector air coupling decreases the light output, depending on the infiltration's extent and the amount of grease infiltrated. Five percent of air in the crystal-photodetector coupling can cause a light output decrease of 2% to 4%. The individual and combined effect of these advanced models can explain the discrepancy of the relative light output obtained with ESR in simulations and experiments. With Teflon, the study indicates that the light output loss strongly depends on the reflectance deterioration caused by grease absorption. CONCLUSIONS Our results indicate that when studying scintillation detector performance with different finishes, performing simulations in ideal coupling conditions can lead to light output overestimation. To perform an accurate light output comparison and ultimately have a reliable detector performance estimation, all potential sources of practical limitations must be carefully considered. To broadly enable high-fidelity modeling, we developed an interface for users to compute their own LUTs, using their surface, scintillator, and reflector characteristics.
Collapse
Affiliation(s)
- Carlotta Trigila
- Department of Biomedical Engineering, University of
California Davis, Davis, CA, United States of America
| | - Emilie Roncali
- Department of Biomedical Engineering, University of
California Davis, Davis, CA, United States of America
- Department of Radiology, University of California Davis,
Davis, CA, United States of America
| |
Collapse
|
6
|
Schaart DR. Physics and technology of time-of-flight PET detectors. Phys Med Biol 2021; 66. [PMID: 33711831 DOI: 10.1088/1361-6560/abee56] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023]
Abstract
The imaging performance of clinical positron emission tomography (PET) systems has evolved impressively during the last ∼15 years. A main driver of these improvements has been the introduction of time-of-flight (TOF) detectors with high spatial resolution and detection efficiency, initially based on photomultiplier tubes, later silicon photomultipliers. This review aims to offer insight into the challenges encountered, solutions developed, and lessons learned during this period. Detectors based on fast, bright, inorganic scintillators form the scope of this work, as these are used in essentially all clinical TOF-PET systems today. The improvement of the coincidence resolving time (CRT) requires the optimization of the entire detection chain and a sound understanding of the physics involved facilitates this effort greatly. Therefore, the theory of scintillation detector timing is reviewed first. Once the fundamentals have been set forth, the principal detector components are discussed: the scintillator and the photosensor. The parameters that influence the CRT are examined and the history, state-of-the-art, and ongoing developments are reviewed. Finally, the interplay between these components and the optimization of the overall detector design are considered. Based on the knowledge gained to date, it appears feasible to improve the CRT from the values of 200-400 ps achieved by current state-of-the-art TOF-PET systems to about 100 ps or less, even though this may require the implementation of advanced methods such as time resolution recovery. At the same time, it appears unlikely that a system-level CRT in the order of ∼10 ps can be reached with conventional scintillation detectors. Such a CRT could eliminate the need for conventional tomographic image reconstruction and a search for new approaches to timestamp annihilation photons with ultra-high precision is therefore warranted. While the focus of this review is on timing performance, it attempts to approach the topic from a clinically driven perspective, i.e. bearing in mind that the ultimate goal is to optimize the value of PET in research and (personalized) medicine.
Collapse
Affiliation(s)
- Dennis R Schaart
- Delft University of Technology, Radiation Science & Technology dept., section Medical Physics & Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| |
Collapse
|
7
|
Lara-Camacho VM, Hernández-Acevedo EM, Alva-Sánchez H, Murrieta-Rodríguez T, Martínez-Dávalos A, Moranchel M, Rodríguez-Villafuerte M. Experimental validation of the ANTS2 code for modelling optical photon transport in monolithic LYSO crystals. Phys Med 2021; 81:215-226. [PMID: 33482439 DOI: 10.1016/j.ejmp.2020.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
In this work the scintillation energy spectra originating from the background radioactivity from polished monolithic lutetium yttrium oxyorthosilicate coupled to position-sensitive silicon photomultipliers (SiPM) was studied using the open source Monte Carlo simulation package ANTS2. Two crystal sizes, fully and partially covering the photosensor area, three surface crystal wrappings (black, specular or diffuse) and the full signal formation process in the photosensor were considered. The simulation results were validated with experimental data acquired under the same geometric and detector operating conditions. In all cases ANTS2 simulated spectra have very good agreement with experimental results, reproducing the expected shape, with correct onset and end at 88 and 1190 keV, respectively, as well as sharp edges at the reference energies of 88, 88 + 202, 88 + 307 and 88 + 202 + 307 keV. The normalized root-mean square error between simulated and measured spectra varied between 4.3% and 10.4%.
Collapse
Affiliation(s)
- Víctor Manuel Lara-Camacho
- Instituto de Física, Universidad Nacional Autónoma de México, A. P. 20-364, Ciudad de México 01000, Mexico; Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | | - Héctor Alva-Sánchez
- Instituto de Física, Universidad Nacional Autónoma de México, A. P. 20-364, Ciudad de México 01000, Mexico
| | - Tirso Murrieta-Rodríguez
- Instituto de Física, Universidad Nacional Autónoma de México, A. P. 20-364, Ciudad de México 01000, Mexico
| | - Arnulfo Martínez-Dávalos
- Instituto de Física, Universidad Nacional Autónoma de México, A. P. 20-364, Ciudad de México 01000, Mexico
| | - Mario Moranchel
- Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | |
Collapse
|
8
|
Psichis K, Kalyvas N, Kandarakis I, Panayiotakis G. MTF of columnar phosphors with a homogenous part: an analytical approach. Med Biol Eng Comput 2020; 58:2551-2565. [PMID: 32815028 DOI: 10.1007/s11517-020-02243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/30/2020] [Indexed: 11/26/2022]
Abstract
A method for the theoretical estimation of the MTF of columnar phosphors with a homogeneous part at the end used in X-ray imaging has been developed. This method considers the light transport inside the scintillator through an analytical modelling, the optical photon beams distribution on the scintillator-optical sensor interface, and uses the definition of the PSF and a Gauss fitted LSF to estimate the MTF of an indirect detector. This method was applied to a columnar CsI:Tl scintillator and validated against experimental results found in literature, and a good agreement was observed. It was found that, by increasing the pixel size of the optical detector and the thickness of the scintillator, the MTF decreased as expected. This method may be used in evaluating the performance of the columnar phosphors used in medical imaging, given their physical and geometrical characteristics.Graphical abstract (a) Side view of a part of the scintillator where five crystal columns with homogeneous ends attached to an optical sensor is shown. (b) Propagation of two random optical photon beams emitted from point K with different angles of emission is shown. All the symbols are explained analytically in the text.
Collapse
Affiliation(s)
- Konstantinos Psichis
- Department of Medical Physics, School of Medicine, University of Patras, 26500, Patras, Greece
| | - Nektarios Kalyvas
- Department of Biomedical Engineering, University of West Attica, 12210, Athens, Greece
| | - Ioannis Kandarakis
- Department of Biomedical Engineering, University of West Attica, 12210, Athens, Greece
| | - George Panayiotakis
- Department of Medical Physics, School of Medicine, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
9
|
Gundacker S, Heering A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector. ACTA ACUST UNITED AC 2020; 65:17TR01. [DOI: 10.1088/1361-6560/ab7b2d] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Lai Y, Zhong Y, Chalise A, Shao Y, Jin M, Jia X, Chi Y. gPET: a GPU-based, accurate and efficient Monte Carlo simulation tool for PET. Phys Med Biol 2019; 64:245002. [PMID: 31711051 PMCID: PMC10593186 DOI: 10.1088/1361-6560/ab5610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monte Carlo (MC) simulation method plays an essential role in the refinement and development of positron emission tomography (PET) systems. However, most existing MC simulation packages suffer from long execution time for practical PET simulations. To fully address this issue, we developed and validated gPET, a graphics processing unit (GPU)-based MC simulation tool for PET. gPET was built on the NVidia CUDA platform. The simulation process was modularized into three functional parts and carried out by the GPU parallel threads: (1) source management, including positron decay, transport and annihilation; (2) gamma transport inside the phantom; and (3) signal detection and processing inside the detector. A hybrid of voxelized (for patient phantoms) and parametrized (for detectors) geometries were employed to sufficiently support particle navigations. Multiple inputs and outputs were available. Hence, a user can flexibly examine different aspects of a PET simulation. We evaluated the performance of gPET in three test cases with benchmark work from GATE8.0, in terms of the testing of the functional modules, the physics models used for gamma transport inside the detector, and the geometric configuration of an irregularly shaped PET detector. Both accuracy and efficiency were quantified. In all test cases, the differences between gPET and GATE for the coincidences with respect to the energy and crystal index distributions are below 3.18% and 2.54%, respectively. The speedup factor is 500 for gPET on a single Titan Xp GPU (1.58 GHz) over GATE8.0 on a single core of Intel i7-6850K CPU (3.6 GHz) for all test cases. In summary, gPET is an accurate and efficient MC simulation tool for PET.
Collapse
Affiliation(s)
- Youfang Lai
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | | | | | | | | | | | | |
Collapse
|
11
|
Volken W, Zulliger MA, Koller B, Manser P, Fix MK. Investigation on the resolution of a micro cone beam CT scanner scintillating detector using Monte Carlo methods. Phys Med 2018; 53:17-24. [PMID: 30241750 DOI: 10.1016/j.ejmp.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/13/2018] [Accepted: 08/05/2018] [Indexed: 11/19/2022] Open
Abstract
The impact of several physical quantities on the spatial resolution of an X-ray scintillating pixel detector for a micro cone beam CT (µCBCT) is investigated and discussed. The XtremeCT from SCANCO Medical AG was simulated using the EGSnrc/EGS++ Monte Carlo (MC) framework and extensively benchmarked in a previous work. The resolution of the detector was determined by simulating a titanium knife-edge to obtain the edge spread function (ESF) and the modulation transfer function (MTF). Propagation of the scintillation light through the scintillator and its coupling into the fiber optics system was taken into account. The contribution of particles scattered in the main scanner components to the detector signal is very low and does not affect the spatial resolution of the detector. The resolution obtained from the energy deposition in the scintillator without any blurring due to the propagation of the scintillation light into the fiber optics array was 31 µm. By assuming isotropic light propagation in the scintillator, the resolution degraded to 360 µm. A simple light propagation model taking into account the impact of the scintillator's columnar microstructures was developed and compared with the MANTIS Monte Carlo simulation package. By reducing the width of the model's light propagation kernel by a factor of 2 compared to the isotropic case, the detector resolution can be improved to 83 µm, which corresponds well to the measured resolution of 86 µm. The resolution of the detector is limited mainly by the propagation of the scintillation light through the scintillator layer. It offers the greatest potential to improve the resolution of the µCBCT imaging system.
Collapse
Affiliation(s)
- W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | - B Koller
- SCANCO Medical AG, Brüttisellen, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland.
| |
Collapse
|
12
|
Song J, Shim HB, Hahn JW. Analytical model for designing a high-energy-efficiency granular double-layer X-ray scintillator with a diffuse reflection layer. OPTICS EXPRESS 2018; 26:21642-21655. [PMID: 30130867 DOI: 10.1364/oe.26.021642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
We propose a simple, efficient, and accurate analytical model for calculating the energy efficiency of a granular double-layer X-ray scintillator with a diffuse reflection layer, based on the first-order approximation of the radiative transfer equation by considering boundary conditions and exponential characteristics. Using the analytical model, we successfully analyze the characteristics of the double-layer X-ray scintillator, such as diffuse reflectance, transmittance, collection efficiency, and energy efficiency. We also suggest a design strategy for the high-energy-efficiency X-ray double-layer scintillator considering high diffuse reflectance and satisfaction of the target spatial resolution. Using the X-ray absorption ratio and the collection efficiency of the double-layer scintillator, the energy efficiency of the double-layer X-ray scintillator is calculated to achieve the best performance in terms of image brightness. Through calculation, we obtain the design of a double-layer X-ray scintillator with an energy efficiency of 8.7% with a computation time of less than a second.
Collapse
|