1
|
Fullarton R, Simard M, Volz L, Toltz A, Chung S, Schuy C, Robertson DG, Royle G, Beddar S, Baker C, Graeff C, Collins‐Fekete C. Imaging lung tumor motion using integrated-mode proton radiography-A phantom study towards tumor tracking in proton radiotherapy. Med Phys 2025; 52:1146-1158. [PMID: 39530503 PMCID: PMC11788258 DOI: 10.1002/mp.17508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Motion of lung tumors during radiotherapy leads to decreased accuracy of the delivered dose distribution. This is especially true for proton radiotherapy due to the finite range of the proton beam. Methods for mitigating motion rely on knowing the position of the tumor during treatment. PURPOSE Proton radiography uses the treatment beam, at an energy high enough to traverse the patient, to produce a radiograph. This work shows the first results of using an integrated-mode proton radiography system to track the position of moving objects in an experimental phantom study; demonstrating the potential of using this method for measuring tumor motion. METHODS Proton radiographs of an anthropomorphic lung phantom, with a motor-driven tumor insert, were acquired approximately every 1 s, using tumor inserts of 10, 20, and 30 mm undergoing a known periodic motion. The proton radiography system used a monolithic scintillator block and digital cameras to capture the residual range of each pencil beam passing through the phantom. These ranges were then used to produce a water equivalent thickness map of the phantom. The centroid of the tumor insert in the radiographs was used to determine its position. This measured position was then compared to the known motion of the phantom to determine the accuracy. RESULTS Submillimeter accuracy on the measurement of the tumor insert was achieved when using a 30 mm tumor insert with a period of 24 s and was found to be improved for decreasing motion amplitudes with a mean absolute error (MAE) of 1.0, 0.9, and 0.7 mm for 20, 15, and 10 mm respectively. Using smaller tumor inserts reduced the accuracy with a MAE of 1.8 and 1.9 mm for a 20 and 10 mm insert respectively undergoing a periodic motion with an amplitude of 20 mm and a period of 24 s. Using a shorter period resulted in significant motion artifacts reducing the accuracy to a MAE of 2.2 mm for a 12 s period and 3.1 mm for a 6 s period for the 30 mm insert with an amplitude of 20 mm. CONCLUSIONS This work demonstrates that the position of a lung tumor insert in a realistic anthropomorphic phantom can be measured with high accuracy using proton radiographs. Results show that the accuracy of the position measurement is the highest for slower tumor motions due to a reduction in motion artifacts. This indicates that the primary obstacle to accurate measurement is the speed of the radiograph acquisition. Although the slower tumor motions used in this study are not clinically realistic, this work demonstrates the potential for using proton radiography for measuring tumor motion with an increased scanning speed that results in a decreased acquisition time.
Collapse
Affiliation(s)
- Ryan Fullarton
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Mikaël Simard
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Lennart Volz
- BiophysicsGSI Helmholtz Centre for Heavy Ion Research GmbHDarmstadtGermany
| | - Allison Toltz
- Department of Radiotherapy PhysicsUniversity College London HospitalNHS Foundation TrustLondonUK
| | - Savanna Chung
- Department of Radiotherapy PhysicsUniversity College London HospitalNHS Foundation TrustLondonUK
| | - Christoph Schuy
- BiophysicsGSI Helmholtz Centre for Heavy Ion Research GmbHDarmstadtGermany
| | - Daniel G. Robertson
- Division of Medical PhysicsDepartment of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Gary Royle
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Sam Beddar
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Colin Baker
- Department of Radiotherapy PhysicsUniversity College London HospitalNHS Foundation TrustLondonUK
| | - Christian Graeff
- BiophysicsGSI Helmholtz Centre for Heavy Ion Research GmbHDarmstadtGermany
| | | |
Collapse
|
2
|
Metzner M, Zhevachevska D, Schlechter A, Kehrein F, Schlecker J, Murillo C, Brons S, Jäkel O, Martišíková M, Gehrke T. Energy painting: helium-beam radiography with thin detectors and multiple beam energies. Phys Med Biol 2024; 69:055002. [PMID: 38295403 DOI: 10.1088/1361-6560/ad247e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Objective.Compact ion imaging systems based on thin detectors are a promising prospect for the clinical environment since they are easily integrated into the clinical workflow. Their measurement principle is based on energy deposition instead of the conventionally measured residual energy or range. Therefore, thin detectors are limited in the water-equivalent thickness range they can image with high precision. This article presents ourenergy paintingmethod, which has been developed to render high precision imaging with thin detectors feasible even for objects with larger, clinically relevant water-equivalent thickness (WET) ranges.Approach.A detection system exclusively based on pixelated silicon Timepix detectors was used at the Heidelberg ion-beam therapy center to track single helium ions and measure their energy deposition behind the imaged object. Calibration curves were established for five initial beam energies to relate the measured energy deposition to WET. They were evaluated regarding their accuracy, precision and temporal stability. Furthermore, a 60 mm × 12 mm region of a wedge phantom was imaged quantitatively exploiting the calibrated energies and five different mono-energetic images. These mono-energetic images were combined in a pixel-by-pixel manner by averaging the WET-data weighted according to their single-ion WET precision (SIWP) and the number of contributing ions.Main result.A quantitative helium-beam radiograph of the wedge phantom with an average SIWP of 1.82(5) % over the entire WET interval from 150 mm to 220 mm was obtained. Compared to the previously used methodology, the SIWP improved by a factor of 2.49 ± 0.16. The relative stopping power value of the wedge derived from the energy-painted image matches the result from range pullback measurements with a relative deviation of only 0.4 %.Significance.The proposed method overcomes the insufficient precision for wide WET ranges when employing detection systems with thin detectors. Applying this method is an important prerequisite for imaging of patients. Hence, it advances detection systems based on energy deposition measurements towards clinical implementation.
Collapse
Affiliation(s)
- Margareta Metzner
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Daria Zhevachevska
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Heidelberg University, Medical Faculty Mannheim, Heidelberg, Germany
| | - Annika Schlechter
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Florian Kehrein
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Julian Schlecker
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology/Radiobiology, Germany
| | - Carlos Murillo
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiology, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Radiation Oncology - Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Radiation Oncology - Heidelberg University Hospital, Heidelberg, Germany
| | - Mária Martišíková
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
| | - Tim Gehrke
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Lundberg M, Meijers A, Souris K, Deffet S, Weber DC, Lomax A, Knopf A. Technical note: development of a simulation framework, enabling the investigation of locally tuned single energy proton radiography. Biomed Phys Eng Express 2024; 10:027002. [PMID: 38241732 DOI: 10.1088/2057-1976/ad20a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Range uncertainties remain a limitation for the confined dose distribution that proton therapy can offer. The uncertainty stems from the ambiguity when translating CT Hounsfield Units (HU) into proton stopping powers. Proton Radiography (PR) can be used to verify the proton range. Specifically, PR can be used as a quality-control tool for CBCT-based synthetic CTs. An essential part of the work illustrating the potential of PR has been conducted using multi-layer ionization chamber (MLIC) detectors and mono-energetic PR. Due to the dimensions of commercially available MLICs, clinical adoption is cumbersome. Here, we present a simulation framework exploring locally-tuned single energy (LTSE) proton radiography and corresponding potential compact PR detector designs. Based on a planning CT data set, the presented framework models the water equivalent thickness. Subsequently, it analyses the proton energies required to pass through the geometry within a defined ROI. In the final step, an LTSE PR is simulated using the MCsquare Monte Carlo code. In an anatomical head phantom, we illustrate that LTSE PR allows for a significantly shorter longitudinal dimension of MLICs. We compared PR simulations for two exemplary 30 × 30 mm2proton fields passing the phantom at a 90° angle at an anterior and a posterior location in an iso-centric setup. The longitudinal distance over which all spots per field range out is significantly reduced for LTSE PR compared to mono-energetic PR. In addition, we illustrate the difference in shape of integral depth dose (IDD) when using constrained PR energies. Finally, we demonstrate the accordance of simulated and experimentally acquired IDDs for an LTSE PR acquisition. As the next steps, the framework will be used to investigate the sensitivity of LTSE PR to various sources of errors. Furthermore, we will use the framework to systematically explore the dimensions of an optimized MLIC design for daily clinical use.
Collapse
Affiliation(s)
- Måns Lundberg
- Institute for Medical Engineering and Medical Informatics, School of Life Science FHNW, Muttenz, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Arturs Meijers
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Kevin Souris
- Ion Beam Applications SA, Louvain-La-Neuve, Belgium
| | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, Zürich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Antje Knopf
- Institute for Medical Engineering and Medical Informatics, School of Life Science FHNW, Muttenz, Switzerland
| |
Collapse
|
4
|
Knobloch C, Metzner M, Kehrein F, Schömers C, Scheloske S, Brons S, Hermann R, Peters A, Jäkel O, Martišíková M, Gehrke T. Experimental helium-beam radiography with a high-energy beam: Water-equivalent thickness calibration and first image-quality results. Med Phys 2022; 49:5347-5362. [PMID: 35670033 DOI: 10.1002/mp.15795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE A clinical implementation of ion-beam radiography (iRad) is envisaged to provide a method for on-couch verification of ion-beam treatment plans. The aim of this work is to introduce and evaluate a method for quantitative water-equivalent thickness (WET) measurements for a specific helium-ion imaging system for WETs that are relevant for imaging thicker body parts in the future. METHODS Helium-beam radiographs (αRads) are measured at the Heidelberg Ion-beam Therapy Center (HIT) with an initial beam energy of 239.5 MeV/ u. An imaging system based on three pairs of thin silicon pixel detectors is used for ion path reconstruction and measuring the energy deposition (dE) of each particle behind the object to be imaged. The dE behind homogeneous plastic blocks is related to their well-known WETs between 280.6mm and 312.6 mm with a calibration curve that is created by fitting the measured data points. The quality of the quantitative WET measurements is determined by the uncertainty of the measured WET of a single ion (single-ion WET precision) and the deviation of a measured WET value to the well-known WET (WET accuracy). Subsequently, the fitted calibration curve is applied to an energy deposition radiograph of a phantom with a complex geometry. The spatial resolution (modulation transfer function at 10% (MTF10% )) and WET accuracy (mean absolute percentage difference (MAPD)) of the WET map, are determined. RESULTS In the optimal imaging WET-range from ∼ 280 mm to 300 mm, the fitted calibration curve reached a mean single-ion WET precision of 1.55 ± 0.00%. Applying the calibration to an ion radiograph (iRad) of a more complex WET distribution, the spatial resolution was determined to be MTF10% = 0.49 ± 0.03 lp/mm and the WET accuracy was assessed as MAPD to 0.21%. CONCLUSIONS Using a beam energy of 239.5MeV/ u and the proposed calibration procedure, quantitative αRads of WETs between ∼ 280mm to 300 mm can be measured and show high potential for clinical use. The proposed approach with the resulting image qualities encourages further investigation towards the clinical application of helium-beam radiography. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- C Knobloch
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg University, Department of Physics and Astronomy, Heidelberg, Germany
| | - M Metzner
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg University, Department of Physics and Astronomy, Heidelberg, Germany
| | - F Kehrein
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg University, Department of Physics and Astronomy, Heidelberg, Germany
| | - C Schömers
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - S Scheloske
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - S Brons
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - R Hermann
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg University Hospital, Department of Radiation Oncology, Heidelberg, Germany.,Goethe University Frankfurt, Institute of Applied Physics, Frankfurt, Germany
| | - A Peters
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - O Jäkel
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - M Martišíková
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - T Gehrke
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg University Hospital, Department of Radiation Oncology, Heidelberg, Germany
| |
Collapse
|
5
|
Meijers A, Seller Oria C, Free J, Langendijk JA, Knopf AC, Both S. Technical Note: First report on an in vivo range probing quality control procedure for scanned proton beam therapy in head and neck cancer patients. Med Phys 2021; 48:1372-1380. [PMID: 33428795 DOI: 10.1002/mp.14713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The capability of proton therapy to provide highly conformal dose distributions is impaired by range uncertainties. The aim of this work is to apply range probing (RP), a form of a proton radiography-based quality control (QC) procedure for range accuracy assessment in head and neck cancer (HNC) patients in a clinical setting. METHODS AND MATERIALS This study included seven HNC patients. RP acquisition was performed using a multi-layer ionization chamber (MLIC). Per patient, two RP frames were acquired within the first two weeks of treatment, on days when a repeated CT scan was obtained. Per RP frame, integral depth dose (IDD) curves of 81 spots around the treatment isocenter were acquired. Range errors are determined as a discrepancy between calculated IDDs in the treatment planning system and measured residual ranges by the MLIC. Range errors are presented relative to the water equivalent path length of individual proton spots. In addition to reporting results for complete measurement frames, an analysis, excluding range error contributions due to anatomical changes, is presented. RESULTS Discrepancies between measured and calculated ranges are smaller when performing RP calculations on the day-specific patient anatomy rather than the planning CT. The patient-specific range evaluation shows an agreement between calculated and measured ranges for spots in anatomically consistent areas within 3% (1.5 standard deviation). CONCLUSIONS The results of an RP-based QC procedure implemented in the clinical practice for HNC patients have been demonstrated. The agreement of measured and simulated proton ranges confirms the 3% uncertainty margin for robust optimization. Anatomical variations show a predominant effect on range accuracy, motivating efforts towards the implementation of adaptive radiotherapy.
Collapse
Affiliation(s)
- Arturs Meijers
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Carmen Seller Oria
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jeffrey Free
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Antje C Knopf
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Division for Medical Radiation Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Seller Oria C, Marmitt GG, Both S, Langendijk JA, Knopf AC, Meijers A. Classification of various sources of error in range assessment using proton radiography and neural networks in head and neck cancer patients. Phys Med Biol 2020; 65. [PMID: 33049722 DOI: 10.1088/1361-6560/abc09c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/13/2020] [Indexed: 11/11/2022]
Abstract
This study evaluates the suitability of convolutional neural networks (CNN) to automatically process proton radiography (PR) based images. CNNs are used to classify PR images impaired by several sources of error affecting the proton range, more precisely setup and calibration curve errors. PR simulations were performed in 40 head and neck cancer patients, at three different anatomical locations (fields A, B and C, centered for head and neck, neck and base of skull coverage). Field sizes were 26x26cm2 for field A and 4.5x4.5cm2 for fields B and C. Range shift maps were obtained by comparing an unperturbed reference PR against a PR where one or more sources of error affected the proton range. CT calibration curve errors in soft, bone and fat tissues and setup errors in the anterior-posterior and inferior-superior directions were simulated individually and in combination. A CNN was trained for each type of PR field, leading to 3 CNNs trained with a mixture of range shift maps arising from one or more sources of range error. To test the full/partial/wrong agreement between predicted and actual sources of range error in the range shift maps, exact, partial and wrong match percentages were computed for an independent test dataset containing range shift maps arising from isolated or combined errors, retrospectively. The CNN corresponding to field A showed superior capability to detect isolated and combined errors, with exact matches of 92% and 71% respectively. Field B showed exact matches of 80% and 54%, and field C resulted in exact matches of 77% and 41%. The suitability of CNNs to classify PR based images containing different sources of error affecting the proton range was demonstrated. This procedure enables the detection of setup and calibration curve errors when they appear individually or in combination, providing valuable information for the interpretation of PR images.
Collapse
Affiliation(s)
| | | | - Stefan Both
- Radiation Oncology, UMCG, Groningen, Groningen, NETHERLANDS
| | | | | | | |
Collapse
|
7
|
Imaging issues specific to hadrontherapy (proton, carbon, helium therapy and other charged particles) for radiotherapy planning, setup, dose monitoring and tissue response assessment. Cancer Radiother 2020; 24:429-436. [DOI: 10.1016/j.canrad.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
|
8
|
Magallanes L, Meyer S, Gianoli C, Kopp B, Voss B, Jakel O, Brons S, Gordon J, Parodi K. Upgrading an Integrating Carbon-Ion Transmission Imaging System With Active Scanning Beam Delivery Toward Low Dose Ion Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2948584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Albertini F, Matter M, Nenoff L, Zhang Y, Lomax A. Online daily adaptive proton therapy. Br J Radiol 2020; 93:20190594. [PMID: 31647313 PMCID: PMC7066958 DOI: 10.1259/bjr.20190594] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
It is recognized that the use of a single plan calculated on an image acquired some time before the treatment is generally insufficient to accurately represent the daily dose to the target and to the organs at risk. This is particularly true for protons, due to the physical finite range. Although this characteristic enables the generation of steep dose gradients, which is essential for highly conformal radiotherapy, it also tightens the dependency of the delivered dose to the range accuracy. In particular, the use of an outdated patient anatomy is one of the most significant sources of range inaccuracy, thus affecting the quality of the planned dose distribution. A plan should be ideally adapted as soon as anatomical variations occur, ideally online. In this review, we describe in detail the different steps of the adaptive workflow and discuss the challenges and corresponding state-of-the art developments in particular for an online adaptive strategy.
Collapse
Affiliation(s)
| | | | | | - Ye Zhang
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland
| | | |
Collapse
|
10
|
Hammi A, Koenig S, Weber DC, Poppe B, Lomax AJ. Patient positioning verification for proton therapy using proton radiography. ACTA ACUST UNITED AC 2018; 63:245009. [DOI: 10.1088/1361-6560/aadf79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|