1
|
Palaniappan P, Knudsen Y, Meyer S, Gianoli C, Schnürle K, Würl M, Bortfeldt J, Parodi K, Riboldi M. Multi-stage image registration based on list-mode proton radiographies for small animal proton irradiation: A simulation study. Z Med Phys 2024; 34:521-532. [PMID: 37353464 PMCID: PMC11624407 DOI: 10.1016/j.zemedi.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 06/25/2023]
Abstract
We present a multi-stage and multi-resolution deformable image registration framework for image-guidance at a small animal proton irradiation platform. The framework is based on list-mode proton radiographies acquired at different angles, which are used to deform a 3D treatment planning CT relying on normalized mutual information (NMI) or root mean square error (RMSE) in the projection domain. We utilized a mouse X-ray micro-CT expressed in relative stopping power (RSP), and obtained Monte Carlo simulations of proton images in list-mode for three different treatment sites (brain, head and neck, lung). Rigid transformations and controlled artificial deformation were applied to mimic position misalignments, weight loss and breathing changes. Results were evaluated based on the residual RMSE of RSP in the image domain including the comparison of extracted local features, i.e. between the reference micro-CT and the one transformed taking into account the calculated deformation. The residual RMSE of the RSP showed that the accuracy of the registration framework is promising for compensating rigid (>97% accuracy) and non-rigid (∼95% accuracy) transformations with respect to a conventional 3D-3D registration. Results showed that the registration accuracy is degraded when considering the realistic detector performance and NMI as a metric, whereas the RMSE in projection domain is rather insensitive. This work demonstrates the pre-clinical feasibility of the registration framework on different treatment sites and its use for small animal imaging with a realistic detector. Further computational optimization of the framework is required to enable the use of this tool for online estimation of the deformation.
Collapse
Affiliation(s)
- Prasannakumar Palaniappan
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Yana Knudsen
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Meyer
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chiara Gianoli
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Schnürle
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias Würl
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan Bortfeldt
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Riboldi
- Department of Medical Physics - Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Giovannelli AC, Köthe A, Safai S, Meer D, Zhang Y, Weber DC, Lomax AJ, Fattori G. Exploring beamline momentum acceptance for tracking respiratory variability in lung cancer proton therapy: a simulation study. Phys Med Biol 2023; 68:195013. [PMID: 37652055 DOI: 10.1088/1361-6560/acf5c4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Objective. Investigating the aspects of proton beam delivery to track organ motion with pencil beam scanning therapy. Considering current systems as a reference, specify requirements for next-generation units aiming at real-time image-guided treatments.Approach. Proton treatments for six non-small cell lung cancer (NSCLC) patients were simulated using repeated 4DCTs to model respiratory motion variability. Energy corrections required for this treatment site were evaluated for different approaches to tumour tracking, focusing on the potential for energy adjustment within beamline momentum acceptance (dp/p). A respiration-synchronised tracking, taking into account realistic machine delivery limits, was compared to ideal tracking scenarios, in which unconstrained energy corrections are possible. Rescanning and the use of multiple fields to mitigate residual interplay effects and dose degradation have also been investigated.Main results. Energy correction requirements increased with motion amplitudes, for all patients and tracking scenarios. Higher dose degradation was found for larger motion amplitudes, rescanning has beneficial effects and helped to improve dosimetry metrics for the investigated limited dp/pof 1.2% (realistic) and 2.4%. The median differences between ideal and respiratory-synchronised tracking show minimal discrepancies, 1% and 5% respectively for dose coverage (CTV V95) and homogeneity (D5-D95). Multiple-field planning improves D5-D95 up to 50% in the most extreme cases while it does not show a significant effect on V95.Significance. This work shows the potential of implementing tumour tracking in current proton therapy units and outlines design requirements for future developments. Energy regulation within momentum acceptance was investigated to tracking tumour motion with respiratory-synchronisation, achieving results in line with the performance of ideal tracking scenarios. ±5% Δp/p would allow to compensate for all range offsets in our NSCLC patient cohort, including breathing variability. However, the realistic momentum of 1.2% dp/prepresentative of existing medical units limitations, has been shown to preserve plan quality.
Collapse
Affiliation(s)
- Anna Chiara Giovannelli
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, Switzerland
| | - Andreas Köthe
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - David Meer
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, Switzerland
| | - Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
3
|
Volz L, Sheng Y, Durante M, Graeff C. Considerations for Upright Particle Therapy Patient Positioning and Associated Image Guidance. Front Oncol 2022; 12:930850. [PMID: 35965576 PMCID: PMC9372451 DOI: 10.3389/fonc.2022.930850] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Particle therapy is a rapidly growing field in cancer therapy. Worldwide, over 100 centers are in operation, and more are currently in construction phase. The interest in particle therapy is founded in the superior target dose conformity and healthy tissue sparing achievable through the particles’ inverse depth dose profile. This physical advantage is, however, opposed by increased complexity and cost of particle therapy facilities. Particle therapy, especially with heavier ions, requires large and costly equipment to accelerate the particles to the desired treatment energy and steer the beam to the patient. A significant portion of the cost for a treatment facility is attributed to the gantry, used to enable different beam angles around the patient for optimal healthy tissue sparing. Instead of a gantry, a rotating chair positioning system paired with a fixed horizontal beam line presents a suitable cost-efficient alternative. Chair systems have been used already at the advent of particle therapy, but were soon dismissed due to increased setup uncertainty associated with the upright position stemming from the lack of dedicated image guidance systems. Recently, treatment chairs gained renewed interest due to the improvement in beam delivery, commercial availability of vertical patient CT imaging and improved image guidance systems to mitigate the problem of anatomical motion in seated treatments. In this review, economical and clinical reasons for an upright patient positioning system are discussed. Existing designs targeted for particle therapy are reviewed, and conclusions are drawn on the design and construction of chair systems and associated image guidance. Finally, the different aspects from literature are channeled into recommendations for potential upright treatment layouts, both for retrofitting and new facilities.
Collapse
Affiliation(s)
- Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yinxiangzi Sheng
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Marco Durante
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Institute of Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Christian Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany.,Institute of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
4
|
El Naqa I, Pogue BW, Zhang R, Oraiqat I, Parodi K. Image guidance for FLASH radiotherapy. Med Phys 2022; 49:4109-4122. [PMID: 35396707 PMCID: PMC9844128 DOI: 10.1002/mp.15662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
FLASH radiotherapy (FLASH-RT) is an emerging ultra-high dose (>40 Gy/s) delivery that promises to improve the therapeutic potential by limiting toxicities compared to conventional RT while maintaining similar tumor eradication efficacy. Image guidance is an essential component of modern RT that should be harnessed to meet the special emerging needs of FLASH-RT and its associated high risks in planning and delivering of such ultra-high doses in short period of times. Hence, this contribution will elaborate on the imaging requirements and possible solutions in the entire chain of FLASH-RT treatment, from the planning, through the setup and delivery with online in vivo imaging and dosimetry, up to the assessment of biological mechanisms and treatment response. In patient setup and delivery, higher temporal sampling than in conventional RT should ensure that the short treatment is delivered precisely to the targeted region. Additionally, conventional imaging tools such as cone-beam computed tomography will continue to play an important role in improving patient setup prior to delivery, while techniques based on magnetic resonance imaging or positron emission tomography may be extremely valuable for either linear accelerator (Linac) or particle FLASH therapy, to monitor and track anatomical changes during delivery. In either planning or assessing outcomes, quantitative functional imaging could supplement conventional imaging for more accurate utilization of the biological window of the FLASH effect, selecting for or verifying things such as tissue oxygen and existing or transient hypoxia on the relevant timescales of FLASH-RT delivery. Perhaps most importantly at this time, these tools might help improve the understanding of the biological mechanisms of FLASH-RT response in tumor and normal tissues. The high dose deposition of FLASH provides an opportunity to utilize pulse-to-pulse imaging tools such as Cherenkov or radiation acoustic emission imaging. These could provide individual pulse mapping or assessing the 3D dose delivery superficially or at tissue depth, respectively. In summary, the most promising components of modern RT should be used for safer application of FLASH-RT, and new promising developments could be advanced to cope with its novel demands but also exploit new opportunities in connection with the unique nature of pulsed delivery at unprecedented dose rates, opening a new era of biological image guidance and ultrafast, pulse-based in vivo dosimetry.
Collapse
Affiliation(s)
- Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
| | - Rongxiao Zhang
- Giesel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Ibrahim Oraiqat
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748, Germany
| |
Collapse
|
5
|
Sheikh K, Liu D, Li H, Acharya S, Ladra MM, Hrinivich WT. Dosimetric evaluation of cone-beam CT-based synthetic CTs in pediatric patients undergoing intensity-modulated proton therapy. J Appl Clin Med Phys 2022; 23:e13604. [PMID: 35413144 PMCID: PMC9194971 DOI: 10.1002/acm2.13604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To evaluate dosimetric changes detected using synthetic computed tomography (sCT) derived from online cone-beam CTs (CBCT) in pediatric patients treated using intensity-modulated proton therapy (IMPT). METHODS Ten pediatric patients undergoing IMPT and aligned daily using proton gantry-mounted CBCT were identified for retrospective analysis with treated anatomical sites fully encompassed in the CBCT field of view. Dates were identified when the patient received both a CBCT and a quality assurance CT (qCT) for routine dosimetric evaluation. sCTs were generated based on a deformable registration between the initial plan CT (pCT) and CBCT. The clinical IMPT plans were re-computed on the same day qCT and sCT, and dosimetric changes due to tissue change or response from the initial plan were computed using each image. Linear regression analysis was performed to determine the correlation between dosimetric changes detected using the qCT and the sCT. Gamma analysis was also used to compare the dose distributions computed on the qCT and sCT. RESULTS The correlation coefficients (p-values) between qCTs and sCTs for changes detected in target coverage, overall maximum dose, and organ at risk dose were 0.97 (< .001), 0.84 (.002) and 0.91 (< .001), respectively. Mean ± SD gamma pass rates of the sCT-based dose compared to the qCT-based dose at 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria were 96.5%±4.5%, 93.2%±6.3%, and 91.3%±7.8%, respectively. Pass rates tended to be lower for targets near lung. CONCLUSION While insufficient for re-planning, sCTs provide approximate dosimetry without administering additional imaging dose in pediatric patients undergoing IMPT. Dosimetric changes detected using sCTs are correlated with changes detected using clinically-standard qCTs; however, residual differences in dosimetry remain a limitation. Further improvements in sCT image quality may both improve online dosimetric evaluation and reduce imaging dose for pediatric patients by reducing the need for routine qCTs.
Collapse
Affiliation(s)
- Khadija Sheikh
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dezhi Liu
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heng Li
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sahaja Acharya
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew M Ladra
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William T Hrinivich
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Palaniappan P, Meyer S, Rädler M, Kamp F, Belka C, Riboldi M, Parodi K, Gianoli C. X-ray CT adaptation based on a 2D-3D deformable image registration framework using simulated in-room proton radiographies. Phys Med Biol 2022; 67. [PMID: 35078167 DOI: 10.1088/1361-6560/ac4ed9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
The aim of this work is to investigate in-room proton radiographies to compensate realistic rigid and non-rigid transformations in clinical-like scenarios based on 2D-3D deformable image registration (DIR) framework towards future clinical implementation of adaptive radiation therapy (ART). Monte Carlo simulations of proton radiographies (pRads) based on clinical x-ray CT of a head and neck, and a brain tumor patients are simulated for two different detector configurations (i.e. integration-mode and list-mode detectors) including high and low proton statistics. A realistic deformation, derived from cone beam CT of the patient, is applied to the treatment planning CT. Rigid inaccuracies in patient positioning are also applied and the effect of small, medium and large fields of view (FOVs) is investigated. A stopping criterion, as desirable in realistic scenarios devoid of ground truth proton CT (pCT), is proposed and investigated. Results show that rigid and non-rigid transformations can be compensated based on a limited number of low dose pRads. The root mean square error with respect to the pCT shows that the 2D-3D DIR of the treatment planning CT based on 10 pRads from integration-mode data and 2 pRads from list-mode data is capable of achieving comparable accuracy (∼90% and >90%, respectively) to conventional 3D-3D DIR. The dice similarity coefficient over the segmented regions of interest also verifies the improvement in accuracy prior to and after 2D-3D DIR. No relevant changes in accuracy are found between high and low proton statistics except for 2 pRads from integration-mode data. The impact of FOV size is negligible. The convergence of the metric adopted for the stopping criterion indicates the optimal convergence of the 2D-3D DIR. This work represents a further step towards the potential implementation of ART in proton therapy. Further computational optimization is however required to enable extensive clinical validation.
Collapse
Affiliation(s)
- Prasannakumar Palaniappan
- Department of Medical Physics-Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Meyer
- Department of Medical Physics-Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Rädler
- Department of Medical Physics-Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, Universitätsklinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, Universitätsklinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Riboldi
- Department of Medical Physics-Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics-Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chiara Gianoli
- Department of Medical Physics-Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Dedes G, Dickmann J, Giacometti V, Rit S, Krah N, Meyer S, Bashkirov V, Schulte R, Johnson RP, Parodi K, Landry G. The role of Monte Carlo simulation in understanding the performance of proton computed tomography. Z Med Phys 2022; 32:23-38. [PMID: 32798033 PMCID: PMC9948882 DOI: 10.1016/j.zemedi.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 01/28/2023]
Abstract
Proton computed tomography (pCT) is a promising tomographic imaging modality allowing direct reconstruction of proton relative stopping power (RSP) required for proton therapy dose calculation. In this review article, we aim at highlighting the role of Monte Carlo (MC) simulation in pCT studies. After describing the requirements for performing proton computed tomography and the various pCT scanners actively used in recent research projects, we present an overview of available MC simulation platforms. The use of MC simulations in the scope of investigations of image reconstruction, and for the evaluation of optimal RSP accuracy, precision and spatial resolution omitting detector effects is then described. In the final sections of the review article, we present specific applications of realistic MC simulations of an existing pCT scanner prototype, which we describe in detail.
Collapse
Affiliation(s)
- George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany.
| | - Jannis Dickmann
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| | - Valentina Giacometti
- The Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Northern Ireland Cancer Centre, Belfast, Northern Ireland, United Kingdom
| | - Simon Rit
- University of Lyon, CREATIS, CNRS UMR5220; Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Nils Krah
- University of Lyon, CREATIS, CNRS UMR5220; Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France; University of Lyon, Institute of Nuclear Physics Lyon (IPNL), CNRS UMR 5822, Villeurbanne, France
| | - Sebastian Meyer
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Vladimir Bashkirov
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States of America
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States of America
| | - Robert P Johnson
- Department of Physics, U. C. Santa Cruz, Santa Cruz, CA, United States of America
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, Department of Medical Physics, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium, (DKTK), Munich, Germany; Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| |
Collapse
|
8
|
Fattori G, Zhang Y, Meer D, Weber DC, Lomax AJ, Safai S. The potential of Gantry beamline large momentum acceptance for real time tumour tracking in pencil beam scanning proton therapy. Sci Rep 2020; 10:15325. [PMID: 32948790 PMCID: PMC7501279 DOI: 10.1038/s41598-020-71821-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 02/01/2023] Open
Abstract
Tumour tracking is an advanced radiotherapy technique for precise treatment of tumours subject to organ motion. In this work, we addressed crucial aspects of dose delivery for its realisation in pencil beam scanning proton therapy, exploring the momentum acceptance and global achromaticity of a Gantry beamline to perform continuous energy regulation with a standard upstream degrader. This novel approach is validated on simulation data from three geometric phantoms of increasing complexity and one liver cancer patient using 4D dose calculations. Results from a standard high-to-low beamline ramping scheme were compared to alternative energy meandering schemes including combinations with rescanning. Target coverage and dose conformity were generally well recovered with tumour tracking even though for particularly small targets, large variations are reported for the different approaches. Meandering in energy while rescanning has a positive impact on target homogeneity and similarly, hot spots outside the targets are mitigated with a relatively fast convergence rate for most tracking scenarios, halving the volume of hot spots after as little as 3 rescans. This work investigates the yet unexplored potential of having a large momentum acceptance in medical beam line, and provides an alternative to take tumour tracking with particle therapy closer to clinical translation.
Collapse
Affiliation(s)
- Giovanni Fattori
- Center for Proton Therapy, WMSA/C14, Paul Scherrer Institute, 5232, Villigen, Switzerland.
| | - Ye Zhang
- Center for Proton Therapy, WMSA/C14, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - David Meer
- Center for Proton Therapy, WMSA/C14, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, WMSA/C14, Paul Scherrer Institute, 5232, Villigen, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, 8091, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, 3000, Bern, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, WMSA/C14, Paul Scherrer Institute, 5232, Villigen, Switzerland.,Department of Physics, ETH Zurich, 8092, Zurich, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, WMSA/C14, Paul Scherrer Institute, 5232, Villigen, Switzerland
| |
Collapse
|