1
|
Gokdeniz ST, Buyuksungur A, Kolsuz ME. Production of heterogenous bone radiopacity phantom using 3D printing. Phys Eng Sci Med 2025; 48:155-166. [PMID: 39652254 DOI: 10.1007/s13246-024-01500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/26/2024] [Indexed: 04/15/2025]
Abstract
The aim is to obtain a heterogenous bone radiopacity phantom with adjustable radiopacity in different regions. The heterogenous 3D printed phantom can be used as bone equivalent in medical education, surgical planning, diagnostic radiology, and radiotherapy. This study utilized a hybrid approach, combining both direct and indirect methods, to create phantoms with realistic bone-equivalent radiodensity. Hollow, cube-shaped test blocks were produced using an SLA 3D printer with a photoreactive resin. The attenuation coefficients of the test blocks were evaluated using Dataviewer software by comparing materials such as calcium sulfate dihydrate, barium sulfate, and hydroxyapatite. The photoreactive resin was modified with hydroxyapatite to increase its radiodensity. A hollow jaw phantom model was then designed and printed using the hydroxyapatite-doped resin. The powder hydroxyapatite was added to the cavities of the printed phantom model. The average attenuation coefficient of barium sulfate was 208 ± 1.90 mm- 1, calcium sulfate dihydrate was 187 ± 1.98 mm- 1, hydroxyapatite was 128 ± 2.35 mm- 1, and bone values, which were considered as reference values in the research, was 125 ± 14 mm- 1. The observed difference between the hydroxyapatite added bone model and real bone was not statistically significant (Z:-0.175, p:0.860). The produced mandibular bone phantom has realistic attenuation coefficient values and heterogeneity in terms of radiological features. This study shows that the use of two different methods, which include hydroxyapatite material added into the photoreactive resin during the 3D printing process and the addition of hydroxyapatite as a powder to the gaps in the bone model obtained after printing, yields successful results in the production of bone-equivalent phantoms.
Collapse
Affiliation(s)
- Seyide Tugce Gokdeniz
- Faculty of Dentistry, Dentomaxillofacial Radiology Department, Ankara University, Ankara, Türkiye
| | - Arda Buyuksungur
- Faculty of Dentistry, Basic Medical Sciences Department, Ankara University, Ankara, Türkiye.
| | - Mehmet Eray Kolsuz
- Faculty of Dentistry, Dentomaxillofacial Radiology Department, Ankara University, Ankara, Türkiye
| |
Collapse
|
2
|
Dogan NO, Suadiye E, Wrede P, Lazovic J, Dayan CB, Soon RH, Aghakhani A, Richter G, Sitti M. Immune Cell-Based Microrobots for Remote Magnetic Actuation, Antitumor Activity, and Medical Imaging. Adv Healthc Mater 2024; 13:e2400711. [PMID: 38885528 DOI: 10.1002/adhm.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Translating medical microrobots into clinics requires tracking, localization, and performing assigned medical tasks at target locations, which can only happen when appropriate design, actuation mechanisms, and medical imaging systems are integrated into a single microrobot. Despite this, these parameters are not fully considered when designing macrophage-based microrobots. This study presents living macrophage-based microrobots that combine macrophages with magnetic Janus particles coated with FePt nanofilm for magnetic steering and medical imaging and bacterial lipopolysaccharides for stimulating macrophages in a tumor-killing state. The macrophage-based microrobots combine wireless magnetic actuation, tracking with medical imaging techniques, and antitumor abilities. These microrobots are imaged under magnetic resonance imaging and optoacoustic imaging in soft-tissue-mimicking phantoms and ex vivo conditions. Magnetic actuation and real-time imaging of microrobots are demonstrated under static and physiologically relevant flow conditions using optoacoustic imaging. Further, macrophage-based microrobots are magnetically steered toward urinary bladder tumor spheroids and imaged with a handheld optoacoustic device, where the microrobots significantly reduce the viability of tumor spheroids. The proposed approach demonstrates the proof-of-concept feasibility of integrating macrophage-based microrobots into clinic imaging modalities for cancer targeting and intervention, and can also be implemented for various other medical applications.
Collapse
Affiliation(s)
- Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Eylül Suadiye
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Paul Wrede
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Jelena Lazovic
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Ren Hao Soon
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany
| | - Gunther Richter
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
5
|
Nakao M, Ozawa S, Miura H, Yamada K, Hayata M, Hayashi K, Kawahara D, Nakashima T, Ochi Y, Okumura T, Kunimoto H, Kawakubo A, Kusaba H, Nozaki H, Habara K, Tohyama N, Nishio T, Nakamura M, Minemura T, Okamoto H, Ishikawa M, Kurooka M, Shimizu H, Hotta K, Saito M, Nakano M, Tsuneda M, Nagata Y. CT number calibration audit in photon radiation therapy. Med Phys 2024; 51:1571-1582. [PMID: 38112216 DOI: 10.1002/mp.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Inadequate computed tomography (CT) number calibration curves affect dose calculation accuracy. Although CT number calibration curves registered in treatment planning systems (TPSs) should be consistent with human tissues, it is unclear whether adequate CT number calibration is performed because CT number calibration curves have not been assessed for various types of CT number calibration phantoms and TPSs. PURPOSE The purpose of this study was to investigate CT number calibration curves for mass density (ρ) and relative electron density (ρe ). METHODS A CT number calibration audit phantom was sent to 24 Japanese photon therapy institutes from the evaluating institute and scanned using their individual clinical CT scan protocols. The CT images of the audit phantom and institute-specific CT number calibration curves were submitted to the evaluating institute for analyzing the calibration curves registered in the TPSs at the participating institutes. The institute-specific CT number calibration curves were created using commercial phantom (Gammex, Gammex Inc., Middleton, WI, USA) or CIRS phantom (Computerized Imaging Reference Systems, Inc., Norfolk, VA, USA)). At the evaluating institute, theoretical CT number calibration curves were created using a stoichiometric CT number calibration method based on the CT image, and the institute-specific CT number calibration curves were compared with the theoretical calibration curve. Differences in ρ and ρe over the multiple points on the curve (Δρm and Δρe,m , respectively) were calculated for each CT number, categorized for each phantom vendor and TPS, and evaluated for three tissue types: lung, soft tissues, and bones. In particular, the CT-ρ calibration curves for Tomotherapy TPSs (ACCURAY, Sunnyvale, CA, USA) were categorized separately from the Gammex CT-ρ calibration curves because the available tissue-equivalent materials (TEMs) were limited by the manufacturer recommendations. In addition, the differences in ρ and ρe for the specific TEMs (ΔρTEM and Δρe,TEM , respectively) were calculated by subtracting the ρ or ρe of the TEMs from the theoretical CT-ρ or CT-ρe calibration curve. RESULTS The mean ± standard deviation (SD) of Δρm and Δρe,m for the Gammex phantom were -1.1 ± 1.2 g/cm3 and -0.2 ± 1.1, -0.3 ± 0.9 g/cm3 and 0.8 ± 1.3, and -0.9 ± 1.3 g/cm3 and 1.0 ± 1.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm and Δρe,m for the CIRS phantom were 0.3 ± 0.8 g/cm3 and 0.9 ± 0.9, 0.6 ± 0.6 g/cm3 and 1.4 ± 0.8, and 0.2 ± 0.5 g/cm3 and 1.6 ± 0.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm for Tomotherapy TPSs was 2.1 ± 1.4 g/cm3 for soft tissues, which is larger than those for other TPSs. The mean ± SD of Δρe,TEM for the Gammex brain phantom (BRN-SR2) was -1.8 ± 0.4, implying that the tissue equivalency of the BRN-SR2 plug was slightly inferior to that of other plugs. CONCLUSIONS Latent deviations between human tissues and TEMs were found by comparing the CT number calibration curves of the various institutes.
Collapse
Affiliation(s)
- Minoru Nakao
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Hideharu Miura
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Kiyoshi Yamada
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Masahiro Hayata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Kosuke Hayashi
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Takeo Nakashima
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Yusuke Ochi
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Takuro Okumura
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Haruhide Kunimoto
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Atsushi Kawakubo
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Hayate Kusaba
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Hiroshige Nozaki
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Division of Radiology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Kosaku Habara
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Division of Radiology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Naoki Tohyama
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Division of Medical Physics, Tokyo Bay Makuhari Clinic for Advanced Imaging, Cancer Screening, and High-Precision Radiotherapy, Chiba, Japan
| | - Teiji Nishio
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mitsuhiro Nakamura
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University, Kyoto, Japan
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiyuki Minemura
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Division of Medical Support and Partnership, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Hiroyuki Okamoto
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, Tokyo, Japan
| | - Masayori Ishikawa
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Masahiko Kurooka
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Therapy, Tokyo Medical University Hospital, Tokyo, Japan
| | - Hidetoshi Shimizu
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Kenji Hotta
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Safety and Quality Assurance division, National Cancer Center Hospital East, Chiba, Japan
- Particle Therapy Division, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Masahide Saito
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Masahiro Nakano
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masato Tsuneda
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| |
Collapse
|
6
|
Asciak L, Gilmour L, Williams JA, Foster E, Díaz-García L, McCormick C, Windmill JFC, Mulvana HE, Jackson-Camargo JC, Domingo-Roca R. Investigating multi-material hydrogel three-dimensional printing for in vitro representation of the neo-vasculature of solid tumours: a comprehensive mechanical analysis and assessment of nitric oxide release from human umbilical vein endothelial cells. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230929. [PMID: 37593713 PMCID: PMC10427827 DOI: 10.1098/rsos.230929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Many solid tumours (e.g. sarcoma, carcinoma and lymphoma) form a disorganized neo-vasculature that initiates uncontrolled vessel formation to support tumour growth. The complexity of these environments poses a significant challenge for tumour medicine research. While animal models are commonly used to address some of these challenges, they are time-consuming and raise ethical concerns. In vitro microphysiological systems have been explored as an alternative, but their production typically requires multi-step lithographic processes that limit their production. In this work, a novel approach to rapidly develop multi-material tissue-mimicking, cell-compatible platforms able to represent the complexity of a solid tumour's neo-vasculature is investigated via stereolithography three-dimensional printing. To do so, a series of acrylate resins that yield covalently photo-cross-linked hydrogels with healthy and diseased mechano-acoustic tissue-mimicking properties are designed and characterized. The potential viability of these materials to displace animal testing in preclinical research is assessed by studying the morphology, actin expression, focal adhesions and nitric oxide release of human umbilical vein endothelial cells. These materials are exploited to produce a simplified multi-material three-dimensional printed model of the neo-vasculature of a solid tumour, demonstrating the potential of our approach to replicate the complexity of solid tumours in vitro without the need for animal testing.
Collapse
Affiliation(s)
- Lisa Asciak
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Lauren Gilmour
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Euan Foster
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Lara Díaz-García
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - James F. C. Windmill
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Helen E. Mulvana
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Roger Domingo-Roca
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
7
|
Dinh J, Yamashita A, Kang H, Gioux S, Choi HS. Optical Tissue Phantoms for Quantitative Evaluation of Surgical Imaging Devices. ADVANCED PHOTONICS RESEARCH 2023; 4:2200194. [PMID: 36643020 PMCID: PMC9838008 DOI: 10.1002/adpr.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Optical tissue phantoms (OTPs) have been extensively applied to the evaluation of imaging systems and surgical training. Due to their human tissue-mimicking characteristics, OTPs can provide accurate optical feedback on the performance of image-guided surgical instruments, simulating the biological sizes and shapes of human organs, and preserving similar haptic responses of original tissues. This review summarizes the essential components of OTPs (i.e., matrix, scattering and absorbing agents, and fluorophores) and the various manufacturing methods currently used to create suitable tissue-mimicking phantoms. As photobleaching is a major challenge in OTP fabrication and its feedback accuracy, phantom photostability and how the photobleaching phenomenon can affect their optical properties are discussed. Consequently, the need for novel photostable OTPs for the quantitative evaluation of surgical imaging devices is emphasized.
Collapse
Affiliation(s)
- Jason Dinh
- Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Atsushi Yamashita
- Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sylvain Gioux
- Intuitive Surgical Sàrl, 1170 Aubonne, Switzerland
- ICube Laboratory, University of Strasbourg, 67081 Strasbourg, France
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|