1
|
Nadig V, Gundacker S, Herweg K, Naunheim S, Schug D, Weissler B, Schulz V. ASICs in PET: what we have and what we need. EJNMMI Phys 2025; 12:16. [PMID: 39939493 PMCID: PMC11822191 DOI: 10.1186/s40658-025-00717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Designing positron emission tomography (PET) scanners involves several significant challenges. These include the precise measurement of the time of arrival of signals, accurate integration of the pulse shape, maintaining low power consumption, and supporting the readout of thousands of channels. To address these challenges, researchers and engineers frequently develop application-specific integrated circuits (ASICs), which are custom-designed readout electronics optimized for specific tasks. As a result, a wide range of ASIC solutions has emerged in PET applications. However, there is currently no comprehensive or standardized comparison of these ASIC designs across the field. METHODS In this paper, we evaluate the requirements posed to readout electronics in the field of PET, give an overview of the most important ASICs available for PET applications and discuss how to characterize their essential features and performance parameters. We thoroughly review the hardware characteristics of the different circuits, such as the number of readout channels provided, their power consumption, input and output design. Furthermore, we summarize their performance as characterized in literature. RESULTS While the ASICs described show common trends towards lower power consumption or a higher number of readout channels over the past two decades, their characteristics and also their performance assessment by the developers, producers and vendors differ in many aspects. To cope with the challenge of selecting a suitable ASIC for a given purpose and PET application from the varying information available, this article suggests a protocol to assess an ASIC's performance parameters and characteristics. CONCLUSION ASICs developed for PET applications are versatile. With novel benchmarks set for the impact of scintillator and photosensor on the time-of-flight performance, the pressure on ASICs to deliver higher timing resolution and cope with an even higher data rate is enormous. Latest developments promise new circuits and improvements in time-of-flight performance. This article provides an overview on existing and emerging readout solutions in PET over the past 20 years, which is currently lacking in literature.
Collapse
Affiliation(s)
- Vanessa Nadig
- University Hospital Aaachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Stefan Gundacker
- University Hospital Aaachen, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050, Vienna, AT, Austria
| | - Katrin Herweg
- University Hospital Aaachen, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute for Imaging and Computer Vision, RWTH Aachen University, Kopernikusstraße 16, 52074, Aachen, GER, Germany
| | - Stephan Naunheim
- University Hospital Aaachen, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute for Imaging and Computer Vision, RWTH Aachen University, Kopernikusstraße 16, 52074, Aachen, GER, Germany
| | - David Schug
- University Hospital Aaachen, Pauwelsstrasse 30, 52074, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, 52074, Aachen, GER, Germany
- Institute for Imaging and Computer Vision, RWTH Aachen University, Kopernikusstraße 16, 52074, Aachen, GER, Germany
| | - Bjoern Weissler
- University Hospital Aaachen, Pauwelsstrasse 30, 52074, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, 52074, Aachen, GER, Germany
- Institute for Imaging and Computer Vision, RWTH Aachen University, Kopernikusstraße 16, 52074, Aachen, GER, Germany
| | - Volkmar Schulz
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, 52074, Aachen, GER, Germany.
- III. Physikalisches Institut B, RWTH Aachen University, Otto-Blumenthal-Straße, 52074, Aachen, GER, Germany.
- Institute for Imaging and Computer Vision, RWTH Aachen University, Kopernikusstraße 16, 52074, Aachen, GER, Germany.
| |
Collapse
|
2
|
Terragni G, Nadig V, Tribbia E, di Gangi S, Toumparidou E, Meyer T, Marton J, Schulz V, Gundacker S, Pizzichemi M, Auffray E. Exploring the performance of a DOI-capable TOF-PET module using different SiPMs, customized and commercial readout electronics. Phys Med Biol 2025; 70:025015. [PMID: 39700624 DOI: 10.1088/1361-6560/ada19a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Objective.Time resolution is crucial in positron emission tomography (PET) to enhance the signal-to-noise ratio and image quality. Moreover, high sensitivity requires long scintillators, which can cause distortions in the reconstructed images due to parallax effects. This study evaluates the performance of a time-of-flight (TOF)-PET module that makes use of a single-side readout of a4×43.1×3.1×15mm3LYSO:Ce matrix with an array of4×4silicon photomultipliers (SiPMs) and a light guide to extract high-resolution TOF and depth of interaction (DOI) information.Approach.This study assesses the performance of the detector prototype using the commercially available TOFPET2 ASIC and SiPMs from various producers. DOI and TOF performance are compared to results using custom-made NINO 32-chip based electronics.Main results.Using a Broadcom NUV-MT array, the detector module read out by the TOFPET2 ASIC demonstrates a DOI resolution of 2.6 ± 0.2 mm full width at half maximum (FWHM) and a coincidence time resolution (CTR) of 216 ± 6 ps FWHM. When read out using the NINO 32-chip based electronics, the same module achieves a DOI resolution of 2.5 ± 0.2 mm and a CTR of 170 ± 5 ps.Significance.The prototype module, read out by commercial electronics and using state-of-the-art SiPMs, achieves a DOI performance comparable to that obtained with custom-made electronics and a CTR of around 200 ps. This approach is scalable to thousands of channels, with only a deterioration in timing resolution compared to the custom-made electronics, which achieve a CTR of 140 ps using a standard non-DOI module.
Collapse
Affiliation(s)
- Giulia Terragni
- CERN, Geneva, Switzerland
- Technical University of Vienna, Vienna, Austria
| | - Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Elena Tribbia
- CERN, Geneva, Switzerland
- University of Milano-Bicocca, Milan, Italy
| | | | - Ekaterini Toumparidou
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | | | | | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
- Physics Institute IIIB, RWTH Aachen University, Aachen, Germany
| | - Stefan Gundacker
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Marco Pizzichemi
- CERN, Geneva, Switzerland
- University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
3
|
Loignon-Houle F, Kratochwil N, Toussaint M, Lowis C, Ariño-Estrada G, Gonzalez AJ, Auffray E, Lecomte R. Improving timing resolution of BGO for TOF-PET: a comparative analysis with and without deep learning. EJNMMI Phys 2025; 12:2. [PMID: 39821728 PMCID: PMC11739447 DOI: 10.1186/s40658-024-00711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The renewed interest in BGO scintillators for TOF-PET is driven by the improved Cherenkov photon detection with new blue-sensitive SiPMs. However, the slower scintillation light from BGO causes significant time walk with leading edge discrimination (LED), which degrades the coincidence time resolution (CTR). To address this, a time walk correction (TWC) can be done by using the rise time measured with a second threshold. Deep learning, particularly convolutional neural networks (CNNs), can also enhance CTR by training with digitized waveforms. It remains to be explored how timing estimation methods utilizing one (LED), two (TWC), or multiple (CNN) waveform data points compare in CTR performance of BGO scintillators. RESULTS In this work, we compare classical experimental timing estimation methods (LED, TWC) with a CNN-based method using the signals from BGO crystals read out by NUV-HD-MT SiPMs and high-frequency electronics. For2 × 2 × 3 mm 3 crystals, implementing TWC results in a CTR of 129 ± 2 ps FWHM, while employing the CNN yields 115 ± 2 ps FWHM, marking improvements of 18 % and 26 %, respectively, relative to the standard LED estimator. For2 × 2 × 20 mm 3 crystals, both methods yield similar CTR (around 240 ps FWHM), offering a ∼ 15 % gain over LED. The CNN, however, exhibits better tail suppression in the coincidence time distribution. CONCLUSIONS The higher complexity of waveform digitization needed for CNNs could potentially be mitigated by adopting a simpler two-threshold approach, which appears to currently capture most of the essential information for improving CTR in longer BGO crystals. Other innovative deep learning models and training strategies may nonetheless contribute further in a near future to harnessing increasingly discernible timing features in TOF-PET detector signals.
Collapse
Affiliation(s)
- Francis Loignon-Houle
- Instituto de Instrumentación para Imagen Molecular, Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera, Valencia, 46002, Spain.
| | - Nicolaus Kratochwil
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, California, 95616, USA
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
| | - Maxime Toussaint
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 12th Avenue N, Sherbrooke, J1H 5N4, Québec, Canada
| | - Carsten Lowis
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
- RWTH Aachen University, 55 Templergraben, Aachen, 52062, Germany
| | - Gerard Ariño-Estrada
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, California, 95616, USA
- Institut de Fìsica d'Altes Energies, Barcelona Institute of Science and Technology, Edifici Cn, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Antonio J Gonzalez
- Instituto de Instrumentación para Imagen Molecular, Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera, Valencia, 46002, Spain
| | - Etiennette Auffray
- CERN, Department EP-CMX, Esplanade des Particules 1, Meyrin, 1217, Switzerland
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 12th Avenue N, Sherbrooke, J1H 5N4, Québec, Canada
- Imaging Research and Technology (IR&T) Inc., 2201 Tanguay St., Magog, Québec, J1X 7K3, Canada
| |
Collapse
|
4
|
Naunheim S, Kuhl Y, Schug D, Schulz V, Mueller F. Improving the Timing Resolution of Positron Emission Tomography Detectors Using Boosted Learning-A Residual Physics Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:582-594. [PMID: 37862278 DOI: 10.1109/tnnls.2023.3323131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Artificial intelligence (AI) is entering medical imaging, mainly enhancing image reconstruction. Nevertheless, improvements throughout the entire processing, from signal detection to computation, potentially offer significant benefits. This work presents a novel and versatile approach to detector optimization using machine learning (ML) and residual physics. We apply the concept to positron emission tomography (PET), intending to improve the coincidence time resolution (CTR). PET visualizes metabolic processes in the body by detecting photons with scintillation detectors. Improved CTR performance offers the advantage of reducing radioactive dose exposure for patients. Modern PET detectors with sophisticated concepts and read-out topologies represent complex physical and electronic systems requiring dedicated calibration techniques. Traditional methods primarily depend on analytical formulations successfully describing the main detector characteristics. However, when accounting for higher-order effects, additional complexities arise matching theoretical models to experimental reality. Our work addresses this challenge by combining traditional calibration with AI and residual physics, presenting a highly promising approach. We present a residual physics-based strategy using gradient tree boosting and physics-guided data generation. The explainable AI framework SHapley Additive exPlanations (SHAPs) was used to identify known physical effects with learned patterns. In addition, the models were tested against basic physical laws. We were able to improve the CTR significantly (more than 20%) for clinically relevant detectors of 19 mm height, reaching CTRs of 185 ps (450-550 keV).
Collapse
|
5
|
Cates JW, Choong WS, Brubaker E. Scintillation and cherenkov photon counting detectors with analog silicon photomultipliers for TOF-PET. Phys Med Biol 2024; 69:045025. [PMID: 38252971 PMCID: PMC10861944 DOI: 10.1088/1361-6560/ad2125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Objective.Standard signal processing approaches for scintillation detectors in positron emission tomography (PET) derive accurate estimates for 511 keV photon time of interaction and energy imparted to the detection media from aggregate characteristics of electronic pulse shapes. The ultimate realization of a scintillation detector for PET is one that provides a unique timestamp and position for each detected scintillation photon. Detectors with these capabilities enable advanced concepts for three-dimensional (3D) position and time of interaction estimation with methods that exploit the spatiotemporal arrival time kinetics of individual scintillation photons.Approach.In this work, we show that taking into consideration the temporal photon emission density of a scintillator, the channel density of an analog silicon photomultiplier (SiPM) array, and employing fast electronic readout with digital signal processing, a detector that counts and timestamps scintillation photons can be realized. To demonstrate this approach, a prototype detector was constructed, comprising multichannel electronic readout for a bismuth germanate (BGO) scintillator coupled to an SiPM array.Main Results.In proof-of-concept measurements with this detector, we were able to count and provide unique timestamps for 66% of all optical photons, where the remaining 34% (two-or-more-photon pulses) are also independently counted, but each photon bunch shares a common timestamp. We show this detector concept can implement 3D positioning of 511 keV photon interactions and thereby enable corrections for time of interaction estimators. The detector achieved 17.6% energy resolution at 511 keV and 237 ± 10 ps full-width-at-half-maximum coincidence time resolution (CTR) (fast spectral component) versus a reference detector. We outline the methodology, readout, and approach for achieving this detector capability in first-ever, proof-of-concept measurements for scintillation photon counting detector with analog silicon photomultipliers.Significance.The presented detector concept is a promising design for large area, high sensitivity TOF-PET detector modules that can implement advanced event positioning and time of interaction estimators, which could push state-of-the-art performance.
Collapse
Affiliation(s)
- Joshua W Cates
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Erik Brubaker
- Sandia National Laboratories, Livermore, CA, United States of America
| |
Collapse
|
6
|
Loignon-Houle F, Toussaint M, Bertrand É, Lemyre FC, Lecomte R. Timing Estimation and Limits in TOF-PET Detectors Producing Prompt Photons. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:692-703. [PMID: 38156329 PMCID: PMC10751813 DOI: 10.1109/trpms.2023.3279455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The production of prompt photons providing high photon time densities is a promising avenue to reach ultrahigh coincidence time resolution (CTR) in time-of-flight PET. Detectors producing prompt photons are receiving high interest experimentally, ignited by past exploratory theoretical studies that have anchored some guiding principles. Here, we aim to consolidate and extend the foundations for the analytical modeling of prompt generating detectors. We extend the current models to a larger range of prompt emission kinetics where more stringent requirements on the prompt photon yield rapidly emerge as a limiting factor. Lower bound and estimator evaluations are investigated with different underlying models, notably by merging or keeping separate the prompt and scintillation photon populations. We further show the potential benefits of knowing the proportion of prompt photons within a detection set to improve the CTR by mitigating the detrimental effect of population (prompt vs scintillation) mixing. Taking into account the fluctuations on the average number of detected prompt photons in the model reveals a limited influence when prompt photons are accompanied by fast scintillation (e.g., LSO:Ce:Ca) but a more significant effect when accompanied by slower scintillation (e.g., BGO). Establishing performance characteristics and limitations of prompt generating detectors is paramount to gauging and targeting the best possible timing capabilities they can offer.
Collapse
Affiliation(s)
- Francis Loignon-Houle
- Sherbrooke Molecular Imaging Center of CRCHUS and with the Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada, currently with Instituto de Instrumentación para Imagen Molecular, Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Maxime Toussaint
- Sherbrooke Molecular Imaging Center of CRCHUS and with the Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Émilie Bertrand
- CRCHUS and with the Department of Mathematics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Félix Camirand Lemyre
- CRCHUS and with the Department of Mathematics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center of CRCHUS and with the Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada, and also with IR&T Inc., Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Weindel K, Nadig V, Herweg K, Schulz V, Gundacker S. A time-based double-sided readout concept of 100 mm LYSO:Ce,Ca fibres for future axial TOF-PET. EJNMMI Phys 2023; 10:43. [PMID: 37450099 PMCID: PMC10349027 DOI: 10.1186/s40658-023-00563-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) requires a high signal-to-noise ratio (SNR) to improve image quality, with time-of-flight (TOF) being an effective way to boost the SNR. However, the scanner sensitivity and resolution must be maintained. The use of axially aligned 100-mm LYSO:Ce,Ca scintillation crystals with double-sided readout has the potential of ground-breaking TOF and sensitivity, while reducing parallax errors through depth-of-interaction (DOI) estimation, and also allowing a reduction in the number of readout channels required, resulting in cost benefits. Due to orientation, these fibres may also facilitate the integration of TOF-PET with magnetic resonance imaging (MRI) in hybrid imaging systems. The challenge of achieving a good spatial resolution with such long axial fibres is directly related to the achievable TOF resolution. In this study, the timing performance and DOI resolution of emerging high-performance materials were investigated to assess the merits of this approach in organ-dedicated or total-body/large-scale PET imaging systems. METHODS LYSO:Ce,Ca scintillation fibres of 20 mm and 100 mm length were tested in various operating and readout configurations to determine the best achievable coincidence time resolution (CTR) and DOI resolution. The tests were performed using state-of-the-art high-frequency (HF) readout and commercially available silicon photomultipliers (SiPMs) from Broadcom Inc. RESULTS For the 100-mm fibre, an average CTR performance of [Formula: see text] ps FWHM and an average depth-of-interaction resolution within the fibre of [Formula: see text] mm FWHM could be obtained. The 20-mm fibre showed a sub-100 ps CTR of [Formula: see text] ps FWHM and a fibre resolution of [Formula: see text] mm FWHM in the double-sided readout configuration. CONCLUSION With modern SiPMs and crystals, a double-sided readout of long fibres can achieve excellent timing resolution and field-advancing TOF resolution, outperforming commercial PET systems. With 100-mm fibres, an electronic channel reduction of about a factor 2.5 is inherent, with larger reduction factors conceivable, which can lead to lower production costs. The spatial resolution was shown to be limited in the axial direction with 12 mm, but is defined to 3 mm in all other directions. Recent SiPM and scintillator developments are expected to improve on the time and spatial resolution to be investigated in future prototypes.
Collapse
Affiliation(s)
- Konstantin Weindel
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Katrin Herweg
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Physics Institute III B, RWTH Aachen University, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
| | - Stefan Gundacker
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
8
|
He X, Trigila C, Ariño-Estrada G, Roncali E. Potential of Depth-of-Interaction-Based Detection Time Correction in Cherenkov Emitter Crystals for TOF-PET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:233-240. [PMID: 36994147 PMCID: PMC10042439 DOI: 10.1109/trpms.2022.3226950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cherenkov light can improve the timing resolution of Positron Emission Tomography (PET) radiation detectors, thanks to its prompt emission. Coincidence time resolutions (CTR) of ~30 ps were recently reported when using 3.2 mm-thick Cherenkov emitters. However, sufficient detection efficiency requires thicker crystals, causing the timing resolution to be degraded by the optical propagation inside the crystal. We report on depth-of-interaction (DOI) correction to mitigate the time-jitter due to the photon time spread in Cherenkov-based radiation detectors. We simulated the Cherenkov and scintillation light generation and propagation in 3 × 3 mm2 lead fluoride, lutetium oxyorthosilicate, bismuth germanate, thallium chloride, and thallium bromide. Crystal thicknesses varied from 9 to 18 mm with a 3-mm step. A DOI-based time correction showed a 2-to-2.5-fold reduction of the photon time spread across all materials and thicknesses. Results showed that highly refractive crystals, though producing more Cherenkov photons, were limited by an experimentally obtained high-cutoff wavelength and refractive index, restricting the propagation and extraction of Cherenkov photons mainly emitted at shorter wavelengths. Correcting the detection time using DOI information shows a high potential to mitigate the photon time spread. These simulations highlight the complexity of Cherenkov-based detectors and the competing factors in improving timing resolution.
Collapse
Affiliation(s)
- Xuzhi He
- Department of Biomedical Engineering at the University of California Davis, Davis, CA 95616 USA
| | - Carlotta Trigila
- Department of Biomedical Engineering at the University of California Davis, Davis, CA 95616 USA
| | - Gerard Ariño-Estrada
- Department of Biomedical Engineering at the University of California Davis, Davis, CA 95616 USA
| | - Emilie Roncali
- Department of Biomedical Engineering at the University of California Davis, Davis, CA 95616 USA
- Department of Radiology at University of California Davis, Sacramento, CA 95817 USA
| |
Collapse
|
9
|
Kiyokawa M, Kang HG, Yamaya T. Tracking the same fast-LGSO crystals by changing surface treatments for better coincidence timing resolution in PET. Biomed Phys Eng Express 2023; 9. [PMID: 36689772 DOI: 10.1088/2057-1976/acb552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Achieving fast coincidence timing resolution (CTR) is an important issue in clinical time-of-flight positron emission tomography (TOF-PET) to improve the reconstructed image quality. One of the major factors affecting the CTR is the crystal surface treatment, which is often parameterized as surface roughness. However, previous studies on the crystal surface treatment optimization had two limitations of crystal-by-crystal variation and worse CTR over 200 ps. Here, we report the effects of the crystal surface treatment on the performance of a 20 mm long fast-LGSO crystal based TOF detector by tracking the same crystals in the sub-180 ps CTR regime. The light collection efficiency (LCE), energy resolution (ER) and CTR of the TOF detector were evaluated with six different crystal surface treatments of chemically polished (C.P), C.P half side roughened (1/2S) treatment, and then the C.P one side roughened (1S) treatment, mechanically polished (M.P) treatment, M.P 1/2S treatment, and M.P 1S treatment. The four lateral surfaces of each crystal were wrapped by using enhanced specular reflector film while the top surface was covered by using Teflon tape. The bottom surface of the crystal was optically coupled to a silicon photomultiplier. The timing and energy signals were extracted by using a custom-made high-frequency readout circuit, and then digitized by using a waveform digitizer. All the experimental conditions were same except the crystal surface treatment. Among the six different crystal surface treatments, the M.P 1S would be the optimal crystal surface treatment which balanced enhancements in the CTR (165 ± 3 ps) and ER (10.5 ± 0.5%). Unlike the M.P 1S, the C.P 1S did not enhance the CTR and ER. Hence, the C.P without roughening would be the second-best optimal crystal surface treatment which balanced the CTR (169 ± 3 ps) and ER (10.5 ± 0.5%).
Collapse
Affiliation(s)
- Miho Kiyokawa
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan.,Department of Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan.,Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
10
|
Mohr P, Efthimiou N, Pagano F, Kratochwil N, Pizzichemi M, Tsoumpas C, Auffray E, Ziemons K. Image Reconstruction Analysis for Positron Emission Tomography With Heterostructured Scintillators. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:41-51. [PMID: 37397180 PMCID: PMC10312993 DOI: 10.1109/trpms.2022.3208615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0 × 3.1 × 15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32% for 100-μm thick plastic layers and 52% for 50 μm, the coincidence time resolution (CTR) distribution improved to 204 ± 49 and 220 ± 41 ps, respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On an NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast-to-noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.
Collapse
Affiliation(s)
- Philipp Mohr
- Factuly of Chemistry and Biotechnology, FH Aachen University of Applied Sciences, 52428 Jülich, Germany, and also with the Experimental Physics Department, European Organization for Nuclear Research (CERN), 1201 Geneva, Switzerland. He is now with the Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nikos Efthimiou
- Department Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Fiammetta Pagano
- Physics Department, University of Milano-Bicocca, 20126 Milan, Italy, and also with the Experimental Physics Department, European Organization for Nuclear Research (CERN), 1201 Geneva, Switzerland
| | - Nicolaus Kratochwil
- Experimental Physics Department, European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Marco Pizzichemi
- Physics Department, University of Milano-Bicocca, 20126 Milan, Italy, and also with the Experimental Physics Department, European Organization for Nuclear Research (CERN), 1201 Geneva, Switzerland
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands, and also with the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, LS2 9JT Leeds, U.K
| | - Etiennette Auffray
- Experimental Physics Department, European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Karl Ziemons
- Faculty of Biomedical Engineering and Technomathematics, FH Aachen University of Applied Sciences, 52428 Jülich, Germany
| |
Collapse
|
11
|
Cates JW, Choong WS. Low power implementation of high frequency SiPM readout for Cherenkov and scintillation detectors in TOF-PET. Phys Med Biol 2022; 67:195009. [PMID: 35961297 PMCID: PMC9829384 DOI: 10.1088/1361-6560/ac8963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 01/25/2023]
Abstract
State-of-the-art (SoA) electronic readout for silicon photomultiplier (SiPM)-based scintillation detectors that demonstrate experimental limits in achievable coincidence time resolution (CTR) leverage low noise, high frequency signal processing to facilitate a single photon time response that is near the limit of the SiPMs architecture. This readout strategy can optimally exploit fast luminescence and prompt photon populations, and promising measurements show detector concepts employing this readout can greatly advance PET detector CTR, relative to SoA in clinical systems. However, the technique employs power hungry components which make the electronics chain impractical for channel-dense time-of-flight (TOF)-PET detectors. We have developed and tested a low noise and high frequency readout circuit which is performant at low power and consists of discrete elements with small footprints, making it feasible for integration into TOF-PET detector prototypes. A 3 × 3 mm2Broadcom SiPM with this readout chain exhibited sub-100 ps single photon time resolution at 10 mW of power consumption, with a relatively minor performance degradation to 120 ± 2 ps FWHM at 5 mW. CTR measurements with 3 × 3 × 20 mm3LYSO and fast LGSO scintillators demonstrated 127 ± 3 ps and 113 ± 2 ps FWHM at optimal power operation and 133 ± 2 ps and 121 ± 3 ps CTR at 5 mW. BGO crystals 3 × 3 × 20 mm3in size show 271 ± 5 ps FWHM CTR (1174 ± 14 ps full-width-at-tenth-maximum (FWTM)) at optimal power dissipation and 289 ± 8 ps (1296 ± 33 ps FWTM) at 5 mW. The compact and low power readout topology that achieves this performance thereby offers a platform to greatly advance PET system CTR and also opportunities to provide high performance TOF-PET at reduced material cost.
Collapse
Affiliation(s)
- Joshua W Cates
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| |
Collapse
|
12
|
Pagano F, Kratochwil N, Salomoni M, Pizzichemi M, Paganoni M, Auffray E. Advances in heterostructured scintillators: toward a new generation of detectors for TOF-PET. Phys Med Biol 2022; 67. [PMID: 35609611 DOI: 10.1088/1361-6560/ac72ee] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Objective.Time-of-flight-positron emission tomography would highly benefit from a coincidence time resolution (CTR) below 100 ps: improvement in image quality and patient workflow, and reduction of delivered dose are among them. This achievement proved to be quite challenging, and many approaches have been proposed and are being investigated for this scope. One of the most recent consists in combining different materials with complementary properties (e.g. high stopping power for 511 keVγ-ray and fast timing) in a so-calledheterostructure,metascintillatorormetapixel. By exploiting a mechanism of energy sharing between the two materials, it is possible to obtain a fraction of fast events which significantly improves the overall time resolution of the system.Approach.In this work, we present the progress on this innovative technology. After a simulation study using the Geant4 toolkit, aimed at understanding the optimal configuration in terms of energy sharing, we assembled four heterostructures with alternating plates of BGO and EJ232 plastic scintillator. We fabricated heterostructures of two different sizes (3 × 3 × 3 mm3and 3 × 3 × 15 mm3), each made up of plates with two different thicknesses of plastic plates. We compared the timing of these pixels with a standard bulk BGO crystal and a structure made of only BGO plates (layeredBGO).Main results.CTR values of 239 ± 12 ps and 197 ± 10 ps FWHM were obtained for the 15 mm long heterostructures with 100µm and 200µm thick EJ232 plates (both with 100µm thick BGO plates), compared to 271 ± 14 ps and 303 ± 15 ps CTR for bulk and layered BGO, respectively.Significance.Significant improvements in timing compared to standard bulk BGO were obtained for all the configurations tested. Moreover, for the long pixels, depth of interaction (DOI) collimated measurements were also performed, allowing to validate a simple model describing light transport inside the heterostructure.
Collapse
Affiliation(s)
- Fiammetta Pagano
- CERN, Esplanade de Particules 1, 1211 Meyrin (Geneva), Switzerland.,University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, I-20126 Milan, Italy
| | - Nicolaus Kratochwil
- CERN, Esplanade de Particules 1, 1211 Meyrin (Geneva), Switzerland.,University of Vienna, Universitaetsring 1, A-1010 Vienna, Austria
| | - Matteo Salomoni
- CERN, Esplanade de Particules 1, 1211 Meyrin (Geneva), Switzerland
| | - Marco Pizzichemi
- CERN, Esplanade de Particules 1, 1211 Meyrin (Geneva), Switzerland.,University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, I-20126 Milan, Italy
| | - Marco Paganoni
- CERN, Esplanade de Particules 1, 1211 Meyrin (Geneva), Switzerland.,University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, I-20126 Milan, Italy
| | | |
Collapse
|
13
|
Kratochwil N, Gundacker S, Auffray E. A roadmap for sole Cherenkov radiators with SiPMs in TOF-PET. Phys Med Biol 2021; 66. [PMID: 34433139 DOI: 10.1088/1361-6560/ac212a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022]
Abstract
Time of flight positron emission tomography can strongly benefit from a very accurate time estimator given by Cherenkov radiation, which is produced upon a 511 keV positron-electron annihilation gamma interaction in heavy inorganic scintillators. While time resolution in the order of 30 ps full width at half maximum (FWHM) has been reported using MCP-PMTs and black painted Cherenkov radiators, such solutions have several disadvantages, like high cost and low detection efficiency of nowadays available MCP-PMTs. On the other hand, silicon photomultipliers (SiPMs) are not limited by those obstacles and provide high photon detection efficiency with a decent time response. Timing performance of PbF2crystals of various lengths and surface conditions coupled to SiPMs was evaluated against a reference detector with an optimized test setup using high-frequency readout and novel time walk correction, with special attention on the intrinsic limits for one detected Cherenkov photon only. The average number of detected Cherenkov photons largely depends on the crystal surface state, resulting in a tradeoff between low photon time spread, thus good timing performance, and sensitivity. An intrinsic Cherenkov photon yield of 16.5 ± 3.3 was calculated for 2 × 2 × 3 mm3sized PbF2crystals upon 511 keVγ-deposition. After time walk correction based on the slew rate of the signal, assuming two identical detector arms in coincidence, and using all events, a time resolution of 215 ps FWHM (142 ps FWHM) was obtained for 2 × 2 × 20 mm3(2 × 2 × 3 mm3) sized PbF2crystals, compared to 261 ps (190 ps) without correction. Selecting on one detected photon only, a single photon coincidence time resolution of 113 ps FWHM for black painted and 166 ps for Teflon wrapped crystals was measured for 3 mm length, compared to 145 ps (black) and 263 ps (Teflon) for 20 mm length.
Collapse
Affiliation(s)
- Nicolaus Kratochwil
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland.,University of Vienna, Universitaetsring 1, A-1010 Vienna, Austria
| | - Stefan Gundacker
- CERN, Esplanade des Particules 1, 1211 Meyrin, Switzerland.,Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, D-52074 Aachen, Germany
| | | |
Collapse
|