1
|
Vindbæk S, Ehrbar S, Worm E, Muren L, Tanadini-Lang S, Petersen J, Balling P, Poulsen P. Motion-induced dose perturbations in photon radiotherapy and proton therapy measured by deformable liver-shaped 3D dosimeters in an anthropomorphic phantom. Phys Imaging Radiat Oncol 2024; 31:100609. [PMID: 39132555 PMCID: PMC11315221 DOI: 10.1016/j.phro.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Background and purpose The impact of intrafractional motion and deformations on clinical radiotherapy delivery has so far only been investigated by simulations as well as point and planar dose measurements. The aim of this study was to combine anthropomorphic 3D dosimetry with a deformable abdominal phantom to measure the influence of intra-fractional motion and gating in photon radiotherapy and evaluate the applicability in proton therapy. Material and methods An abdominal phantom was modified to hold a deformable anthropomorphic 3D dosimeter shaped as a human liver. A liver-specific photon radiotherapy and a proton pencil beam scanning therapy plan were delivered to the phantom without motion as well as with 12 mm sinusoidal motion while using either no respiratory gating or respiratory gating. Results Using the stationary irradiation as reference the local 3 %/2 mm 3D gamma index pass rate of the motion experiments in the planning target volume (PTV) was above 97 % (photon) and 78 % (proton) with gating whereas it was below 74 % (photon) and 45 % (proton) without gating. Conclusions For the first time a high-resolution deformable anthropomorphic 3D dosimeter embedded in a deformable abdominal phantom was applied for experimental validation of both photon and proton treatments of targets exhibiting respiratory motion. It was experimentally shown that gating improves dose coverage and the geometrical accuracy for both photon radiotherapy and proton therapy.
Collapse
Affiliation(s)
- Simon Vindbæk
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Esben Worm
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ludvig Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Jørgen Petersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Goddu SM, Hao Y, Ji Z, Setianegara J, Liu F, Green W, Sobotka LG, Zhao T, Perkins S, Darafsheh A. High spatiotemporal resolution scintillation imaging of pulsed pencil beam scanning proton beams produced by a gantry-mounted synchrocyclotron. Med Phys 2024; 51:4996-5006. [PMID: 38748998 DOI: 10.1002/mp.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND A dosimeter with high spatial and temporal resolution would be of significant interest for pencil beam scanning (PBS) proton beams' characterization, especially when facing small fields and beams with high temporal dynamics. Optical imaging of scintillators has potential in providing sub-millimeter spatial resolution with pulse-by-pulse basis temporal resolution when the imaging system is capable of operating in synchrony with the beam-producing accelerator. PURPOSE We demonstrate the feasibility of imaging PBS proton beams as they pass through a plastic scintillator detector to simultaneously obtain multiple beam parameters, including proton range, pencil beam's widths at different depths, spot's size, and spot's position on a pulse-by-pulse basis with sub-millimeter resolution. MATERIALS AND METHODS A PBS synchrocyclotron was used for proton irradiation. A BC-408 plastic scintillator block with 30 × 30 × 5 cm3 size, and another block with 30 × 30 × 0.5 cm3 size, positioned in an optically sealed housing, were used sequentially to measure the proton range, and spot size/location, respectively. A high-speed complementary metal-oxide-semiconductor (CMOS) camera system synchronized with the accelerator's pulses through a gating module was used for imaging. Scintillation images, captured with the camera directly facing the 5-cm-thick scintillator, were corrected for background (BG), and ionization quenching of the scintillator to obtain the proton range. Spots' position and size were obtained from scintillation images of the 0.5-cm-thick scintillator when a 45° mirror was used to reflect the scintillation light toward the camera. RESULTS Scintillation images with 0.16 mm/pixel resolution corresponding to all proton pulses were captured. Pulse-by-pulse analysis showed that variations of the range, spots' position, and size were within ± 0.2% standard deviation of their average values. The absolute ranges were within ± 1 mm of their expected values. The average spot-positions were mostly within ± 0.8 mm and spots' sigma agreed within 0.2 mm of the expected values. CONCLUSION Scintillation-imaging PBS beams with high-spatiotemporal resolution is feasible and may help in efficient and cost-effective acceptance testing and commissioning of existing and even emerging technologies such as FLASH, grid, mini-beams, and so forth.
Collapse
Affiliation(s)
- S Murty Goddu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zhen Ji
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jufri Setianegara
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Fengwei Liu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Winter Green
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lee G Sobotka
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Stephanie Perkins
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Uijtewaal P, Borman P, Cote B, LeChasseur Y, Therriault-Proulx F, Flores R, Smith S, Koenig G, Raaymakers B, Fast M. Performance characterization of a novel hybrid dosimetry insert for simultaneous spatial, temporal, and motion-included dosimetry for MR-linac. Med Phys 2024; 51:2983-2997. [PMID: 38088939 DOI: 10.1002/mp.16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Several (online) adaptive radiotherapy procedures are available to maximize healthy tissue sparing in the presence of inter/intrafractional motion during stereotactic body radiotherapy (SBRT) on an MR-linac. The increased treatment complexity and the motion-delivery interplay during these treatments require MR-compatible motion phantoms with time-resolved dosimeters to validate end-to-end workflows. This is not possible with currently available phantoms. PURPOSE Here, we demonstrate a new commercial hybrid film-scintillator cassette, combining high spatial resolution radiochromic film with four time-resolved plastic scintillator dosimeters (PSDs) in an MRI-compatible motion phantom. METHODS First, the PSD's performance for consistency, dose linearity, and pulse repetition frequency (PRF) dependence was evaluated using an RW3 solid water slab phantom. We then demonstrated the MRI4D scintillator cassette's suitability for time-resolved and motion-included quality assurance for adapt-to-shape (ATS), trailing, gating, and multileaf collimator (MLC) tracking adaptations on a 1.5 T MR-linac. To do this, the cassette was inserted into the Quasar MRI4D phantom, which we used statically or programmed with artificial and patient-derived motion. Simultaneously with dose measurements, the beam-gating latency was estimated from the time difference between the target entering/leaving the gating window and the beam-on/off times derived from the time-resolved dose measurements. RESULTS Experiments revealed excellent detector consistency (standard deviation ≤ $\le$ 0.6%), dose linearity (R2 = 1), and only very low PRF dependence ( ≤ $\le$ 0.4%). The dosimetry cassette demonstrated a near-perfect agreement during an ATS workflow between the time-resolved PSD and treatment planning system (TPS) dose (0%-2%). The high spatial resolution film measurements confirmed this with a 1%/1-mm local gamma pass-rate of 90%. When trailing patient-derived prostate motion for a prostate SBRT delivery, the time-resolved cassette measurements demonstrated how trailing mitigated the motion-induced dose reductions from 1%-17% to 1%-2% compared to TPS dose. The cassette's simultaneously measured spatial dose distribution highlighted the dosimetric gain of trailing by improving the 3%/3-mm local gamma pass-rates from 80% to 97% compared to the static dose. Similarly, the cassette demonstrated the benefit of real-time adaptations when compensating patient-derived respiratory motion by showing how the TPS dose was restored from 2%-56% to 0%-12% (gating) and 1%-26% to 1%-7% (MLC tracking) differences. Larger differences are explainable by TPS-PSD coregistration uncertainty combined with a steep dose gradient outside the PTV. The cassette also demonstrated how the spatial dose distributions were drastically improved by the real-time adaptations with 1%/1-mm local gamma pass-rates that were increased from 8 to 79% (gating) and from 35 to 89% (MLC tracking). The cassette-determined beam-gating latency agreed within ≤ $\le$ 12 ms with the ground truth latency measurement. Film and PSD dose agreed well for most cases (differences relative to TPS dose < $<$ 4%), while film-PSD coregistration uncertainty caused relative differences of 5%-8%. CONCLUSIONS This study demonstrates the excellent suitability of a new commercial hybrid film-scintillator cassette for simultaneous spatial, temporal, and motion-included dosimetry.
Collapse
Affiliation(s)
- Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim Borman
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Uijtewaal P, Côté B, Foppen T, de Vries W, Woodings S, Borman P, Lambert-Girard S, Therriault-Proulx F, Raaymakers B, Fast M. Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac. Phys Med Biol 2023; 68. [PMID: 36638536 DOI: 10.1088/1361-6560/acb30c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Objective.Adaptive radiotherapy techniques available on the MR-linac, such as daily plan adaptation, gating, and dynamic tracking, require versatile dosimetric detectors to validate end-to-end workflows. Plastic scintillator detectors (PSDs) offer great potential with features including: water equivalency, MRI-compatibility, and time-resolved dose measurements. Here, we characterize the performance of the HYPERSCINT RP-200 PSD (MedScint, Quebec, CA) in a 1.5 T MR-linac, and we demonstrate its suitability for dosimetry, including in a moving target.Approach.Standard techniques of detector testing were performed using a Beamscan water tank (PTW, Freiburg, DE) and compared to microDiamond (PTW, Freiburg, DE) readings. Orientation dependency was tested using the same phantom. An RW3 solid water phantom was used to evaluate detector consistency, dose linearity, and dose rate dependence. To determine the sensitivity to motion and to MRI scanning, the Quasar MRI4Dphantom (Modus, London, ON) was used statically or with sinusoidal motion (A= 10 mm,T= 4 s) to compare PSD and Semiflex ionization chamber (PTW, Freiburg, DE) readings. Conformal beams from gantry 0° and 90° were used as well as a 15-beam 8 × 7.5 Gy lung IMRT plan.Main results.Measured profiles, PDD curves and field-size dependence were consistent with the microDiamond readings with differences well within our clinical tolerances. The angular dependence gave variations up to 0.8% when not irradiating directly from behind the scintillation point. Experiments revealed excellent detector consistency between repeated measurements (SD = 0.06%), near-perfect dose linearity (R2= 1) and a dose rate dependence <0.3%. Dosimetric effects of MRI scanning (≤0.3%) and motion (≤1.3%) were minimal. Measurements were consistent with the Semiflex (differences ≤1%), and with the treatment planning system with differences of 0.8% and 0.4%, with and without motion.Significance.This study demonstrates the suitability of the HYPERSCINT PSD for accurate time-resolved dosimetry measurements in the 1.5 T MR-linac, including during MR scanning and target motion.
Collapse
Affiliation(s)
- Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Benjamin Côté
- MedScint, 1405 Bd du Parc Technologique, Québec, QC G1P 4P5, Canada
| | - Thomas Foppen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Wilfred de Vries
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Simon Woodings
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pim Borman
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | - Bas Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Goddu SM, Westphal GT, Sun B, Wu Y, Bloch CD, Bradley JD, Darafsheh A. Synchronized high-speed scintillation imaging of proton beams, generated by a gantry-mounted synchrocyclotron, on a pulse-by-pulse basis. Med Phys 2022; 49:6209-6220. [PMID: 35760763 DOI: 10.1002/mp.15826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND With the emergence of more complex and novel proton delivery techniques, there is a need for quality assurance (QA) tools with high spatiotemporal resolution to conveniently measure the spatial and temporal properties of the beam. In this context, scintillation-based dosimeters, if synchronized with the radiation beam and corrected for ionization quenching, are appealing. PURPOSE To develop a synchronized high-speed scintillation imaging system for characterization and verification of the proton therapy beams on a pulse-by-pulse basis. MATERIALS AND METHODS A 30 cm × 30 cm × 5 cm block of BC-408 plastic scintillator placed in a light-tight housing was irradiated by proton beams generated by a Mevion S250TM proton therapy synchrocyclotron. A high-speed camera system, placed perpendicular to the beam direction and facing the scintillator, was synchronized to the accelerator's pulses to capture images. Opening and closing of the camera's shutter was controlled by setting a proper time delay and exposure time, respectively. The scintillation signal was recorded as a set of two-dimensional (2D) images. Empirical correction factors were applied to the images to correct for the non-uniformity of the pixel sensitivity and quenching of the scintillator. Proton range and modulation were obtained from the corrected images. RESULTS The camera system was able to capture all data on a pulse-by-pulse basis at a rate of ∼504 frames per second. The applied empirical correction method for ionization quenching was effective and the corrected composite image provided a 2D map of dose distribution. The measured range (depth of distal 90%) through scintillation imaging agreed within 1.2 mm with that obtained from ionization chamber measurement. CONCLUSION A high-speed camera system capable of capturing scintillation signals from individual proton pulses was developed. The scintillation imaging system is promising for rapid proton beam characterization and verification. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- S Murty Goddu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Baozhou Sun
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Yu Wu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Charles D Bloch
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, 98133, USA
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30308, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
6
|
Cloutier E, Beaulieu L, Archambault L. On the use of polychromatic cameras for high spatial resolution spectral dose measurements. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6b0e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Despite the demonstrated benefits of hyperspectral formalism for stem effect corrections in the context of fiber dose measurements, this approach has not been yet translated into volumetric measurements where cameras are typically used for their distinguishing spatial resolution. This work investigates demosaicing algorithms for polychromatic cameras based spectral imaging. Approach. The scintillation and Cherenkov signals produced in a radioluminescent phantom are imaged by a polychromatic camera and isolated using the spectral formalism. To do so, five demosaicing algorithms are investigated from calibration to measurements: a clustering method and four interpolation algorithms. The resulting accuracy of scintillation and Cherenkov images is evaluated with measurements of the differences (mean ± standard deviation) between the obtained and expected signals from profiles drawn across a scintillation spot. Signal-to-noise ratio and signal-to-background ratio are further measured and compared in the resulting scintillation images. Finally, the resulting differences on the scintillation signal from a 0.2 × 0.2 cm2 region-of-interest (ROI) were reported. Main results. Clustering, OpenCV, bilinear, Malvar and Menon demosaicing algorithms respectively yielded differences of 3 ± 5%, 1 ± 3%, 1 ± 3%, 1 ± 2% and 2 ± 4% in the resulting scintillation images. For the Cherenkov images, all algorithms provided differences below 1%. All methods enabled measurements over the detectability (SBR > 2) and sensitivity (SNR > 5) thresholds with the bilinear algorithm providing the best SNR value. Clustering, OpenCV, bilinear, Malvar and Menon demosaicing algorithms respectively provided differences on the ROI analysis of 7 ± 5%, 3 ± 2%, 3 ± 2%, 4 ± 2%, 7 ± 3%. Significance. Radioluminescent signals can accurately be isolated using a single polychromatic camera. Moreover, demosaicing using a bilinear kernel provided the best results and enabled Cherenkov signal subtraction while preserving the full spatial resolution of the camera.
Collapse
|
7
|
Cloutier E, Archambault L, Beaulieu L. Deformable scintillation dosimeter I: challenges and implementation using computer vision techniques. Phys Med Biol 2021; 66. [PMID: 34380116 DOI: 10.1088/1361-6560/ac1ca1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
Plastic scintillation detectors are increasingly used to measure dose distributions in the context of radiotherapy treatments. Their water-equivalence, real-time response and high spatial resolution distinguish them from traditional detectors, especially in complex irradiation geometries. Their range of applications could be further extended by embedding scintillators in a deformable matrix mimicking anatomical changes. In this work, we characterized signal variations arising from the translation and rotation of scintillating fibers with respect to a camera. Corrections are proposed using stereo vision techniques and two sCMOS complementing a CCD camera. The study was extended to the case of a prototype real-time deformable dosimeter comprising an array of 19 scintillating fibers. The signal to angle relationship follows a gaussian distribution (FWHM = 52°) whereas the intensity variation from radial displacement follows the inverse square law. Tracking the position and angle of the fibers enabled the correction of these spatial dependencies. The detecting system provides an accuracy and precision of respectively 0.08 mm and 0.3 mm on the position detection. This resulted in an uncertainty of 2° on the angle measurement. Displacing the dosimeter by ±3 cm in depth resulted in relative intensities of 100 ± 10% (mean ± standard deviation) to the reference position. Applying corrections reduced the variations thus resulting in relative intensities of 100 ± 1%. Similarly, for lateral displacements of ±3 cm, intensities went from 98 ± 3% to 100 ± 1% after the correction. Therefore, accurate correction of the signal collected by a camera imaging the output of scintillating elements in a 3D volume is possible. This work paves the way to the development of real-time scintillator-based deformable dosimeters.
Collapse
Affiliation(s)
- E Cloutier
- Service de physique médicale et Axe Oncologie du Centre de recherche, CHU de Québec-Université Laval, Canada.,Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Canada
| | - L Archambault
- Service de physique médicale et Axe Oncologie du Centre de recherche, CHU de Québec-Université Laval, Canada.,Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Canada
| | - L Beaulieu
- Service de physique médicale et Axe Oncologie du Centre de recherche, CHU de Québec-Université Laval, Canada.,Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Canada
| |
Collapse
|