1
|
Du J, Du S. Performance Comparison of DOI-Encoding PET Detectors Based on 1.1-mm Pitch BGO Arrays With Different Reflectors. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:257-262. [PMID: 39279872 PMCID: PMC11392223 DOI: 10.1109/trpms.2024.3361891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Bismuth germanate (BGO)-based positron emission tomography (PET) detectors are potential candidates for low-dose imaging PET scanners, owing to the high stopping power and low background radiation of BGO. In this paper, we compared the performance of two dual-ended readout PET detectors based on 15 × 15 BGO arrays. Both arrays had the same 1.1 mm pitch but utilized different reflectors - barium sulfate (BaSO4) and enhanced specular reflector film (ESR) - for high-resolution PET applications. The detectors were constructed with Hamamatsu 13361-2050-08 SiPM arrays. Each BGO element had dimensions of 1.02 × 1.02 × 20 mm3. The lateral surfaces of the BGO elements were unpolished (saw-cut), while the two ends were polished. Flood histograms showed that the detector based on the BGO array with BaSO4 reflector had much better crystal identification and depth-of-interaction (DOI) resolution. Specifically, the energy, DOI, and timing resolutions for the detector using the BGO array with BaSO4 reflector were 19.8 ± 1.5%, 4.13 ± 0.48 mm, and 2.80 ± 0.23 ns, respectively. In contrast, the values obtained using the BGO array with ESR reflector were 20.9 ± 2.1%, 7.69 ± 1.92 mm, and 2.93 ± 0.20 ns, respectively.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, 95616 USA
| | - Shixian Du
- Department of Biomedical Engineering, University of California at Davis and now is with the Department of Radiology & Biomedical Imaging, University of California at San Francisco, San Francisco, CA, 94107 USA
| |
Collapse
|
2
|
Park H, Yi M, Lee JS. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: a review. Biomed Eng Lett 2022; 12:263-283. [PMID: 35892029 PMCID: PMC9308856 DOI: 10.1007/s13534-022-00234-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, silicon photomultiplier (SiPM) is replacing the photomultiplier tube (PMT) in positron emission tomography (PET) systems due to its superior properties, such as fast single-photon timing response, small gap between adjacent photosensitive pixels in the array, and insensitivity to magnetic fields. One of the technical challenges when developing SiPM-based PET systems or other position-sensitive radiation detectors is the large number of output channels coming from the SiPM array. Therefore, various signal multiplexing methods have been proposed to reduce the number of output channels and the load on the subsequent data acquisition (DAQ) system. However, the large PN-junction capacitance and quenching resistance of the SiPM yield undesirable resistance-capacitance delay when multiple SiPMs are combined, which subsequently causes the accumulation of dark counts and signal fluctuation of SiPMs. Therefore, without proper SiPM signal handling and processing, the SiPMs may yield worse timing characteristics than the PMTs. This article reviews the evolution of signal readout and multiplexing methods for the SiPM. In this review, we focus primarily on analog electronics for SiPM signal multiplexing, which allows for the reduction of DAQ channels required for the SiPM-based position-sensitive detectors used in PET and other radiation detector systems. Although the applications of most technologies described in the article are not limited to PET systems, the review highlights efforts to improve the physical performance (e.g. spatial, energy, and timing resolutions) of PET detectors and systems.
Collapse
Affiliation(s)
- Haewook Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Minseok Yi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Brightonix Imaging Inc, Seoul, 04782 South Korea
| |
Collapse
|
3
|
Development and Evaluation of a Dual-Layer-Offset PET Detector Constructed with Different Reflectors. CRYSTALS 2022. [DOI: 10.3390/cryst12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dual-layer-offset or multi-layer-offset design of a PET detector can improve spatial resolution while maintaining high sensitivity. In this study, three dual-layer-offset LYSO detectors with three different reflectors (ESR, Toray, and BaSO4) were developed. The top layer consisted of a 17 × 17 array of crystals 1 × 1 × 6.5 mm3 in size and the bottom layer consisted of an 18 × 18 array of crystals 1 × 1 × 9.5 mm3 in size. Neither light guides nor optical glue were used between the two layers of crystals. A custom-designed electronics system, composed of a 6 × 6 SiPM array, two FPC cables, and a custom-designed data processing module, was used to read out signals. An optimized interaction-decoding algorithm using the center of gravity to determine the position and threshold of analog signals for timing methods was applied to generate decoding flood histograms. The detector performances, in terms of peak to valley ratio of the flood histograms and energy resolutions, were calculated and compared. The dual-layer-offset PET detector constructed with BaSO4 reflectors performed much better than the other two reflectors in both crystal identification and energy resolution. The average peak-to-valley ratio and the energy resolution were approximately 7 and 11%, respectively. In addition, the crystals in the bottom layer showed better performance at crystal identification than those in the top layer. This study can act as a reference providing guidance in choosing scintillator reflectors for multi-layer dedicated DOI detectors designed for small-animal PET imaging.
Collapse
|