1
|
Yousif YAM, Daniel J, Healy B, Hill R. A study of polarity effect for various ionization chambers in kilovoltage x-ray beams. Med Phys 2024; 51:4513-4523. [PMID: 38669346 DOI: 10.1002/mp.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ionization chambers play an essential role in dosimetry measurements for kilovoltage (kV) x-ray beams. Despite their widespread use, there is limited data on the absolute values for the polarity correction factors across a range of commonly employed ionization chambers. PURPOSE This study aimed to investigate the polarity effects for five different ionization chambers in kV x-ray beams. METHODS Two plane-parallel chambers being the Advanced Markus and Roos and three cylindrical chambers; 3D PinPoint, Semiflex and Farmer chamber (PTW, Freiburg, Germany), were employed to measure the polarity correction factors. The kV x-ray beams were produced from an Xstrahl 300 unit (Xstrahl Ltd., UK). All measurements were acquired at 2 cm depth in a PTW-MP1 water tank for beams between 60 kVp (HVL 1.29 mm Al) and 300 kVp (HVL 3.08 mm Cu), and field sizes of 2-10 cm diameter for 30 cm focus-source distance (FSD) and 4 × 4 cm2 - 20 × 20 cm2 for 50 cm FSD. The ionization chambers were connected to a PTW-UNIDOS electrometer, and the polarity effect was determined using the AAPM TG-61 code of practice methodology. RESULTS The study revealed significant polarity effects in ionization chambers, especially in those with smaller volumes. For the plane-parallel chambers, the Advanced Markus chamber exhibited a maximum polarity effect of 2.5%, whereas the Roos chamber showed 0.3% at 150 KVp with the 10 cm circular diameter open-ended applicator. Among the cylindrical chambers at the same beam energy and applicator, the Pinpoint chamber exhibited a 3% polarity effect, followed by Semiflex with 1.7%, and Farmer with 0.4%. However, as the beam energy increased to 300 kVp, the polarity effect significantly increased reaching 8.5% for the Advanced Markus chamber and 13.5% for the PinPoint chamber at a 20 × 20 cm2 field size. Notably, the magnitude of the polarity effect increased with both the field size and beam energy, and was significantly influenced by the size of the chamber's sensitive volume. CONCLUSIONS The findings demonstrate that ionization chambers can exhibit substantial polarity effects in kV x-ray beams, particularly for those chambers with smaller volumes. Therefore, it is important to account for polarity corrections when conducting relative dose measurements in kV x-ray beams to enhance the dosimetry accuracy and improve patient dose calculations.
Collapse
Affiliation(s)
- Yousif A M Yousif
- Crown Princess Mary Cancer Centre, Westmead Hospital, Wentworthville, New South Wales, Australia
- North West Cancer Centre, Tamworth Hospital, Tamworth, New South Wales, Australia
| | - John Daniel
- North West Cancer Centre, Tamworth Hospital, Tamworth, New South Wales, Australia
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| | - Brendan Healy
- Australian Clinical Dosimetry Service (ACDS), Yallambie, Victoria, Australia
| | - Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Casar B, Mendez I, Gershkevitsh E, Wegener S, Jaffray D, Heaton R, Pesznyak C, Stelczer G, Bulski W, Chełminski K, Smirnov G, Antipina N, Beavis AW, Harding N, Jurković S, Hwang MS, Saiful Huq M. On dosimetric characteristics of detectors for relative dosimetry in small fields: a multicenter experimental study. Phys Med Biol 2024; 69:035009. [PMID: 38091616 DOI: 10.1088/1361-6560/ad154c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Objective. In this multicentric collaborative study, we aimed to verify whether the selected radiation detectors satisfy the requirements of TRS-483 Code of Practice for relative small field dosimetry in megavoltage photon beams used in radiotherapy, by investigating four dosimetric characteristics. Furthermore, we intended to analyze and complement the recommendations given in TRS-483.Approach. Short-term stability, dose linearity, dose-rate dependence, and leakage were determined for 17 models of detectors considered suitable for small field dosimetry. Altogether, 47 detectors were used in this study across ten institutions. Photon beams with 6 and 10 MV, with and without flattening filters, generated by Elekta Versa HDTMor Varian TrueBeamTMlinear accelerators, were used.Main results. The tolerance level of 0.1% for stability was fulfilled by 70% of the data points. For the determination of dose linearity, two methods were considered. Results from the use of a stricter method show that the guideline of 0.1% for dose linearity is not attainable for most of the detectors used in the study. Following the second approach (squared Pearson's correlation coefficientr2), it was found that 100% of the data fulfill the criteriar2> 0.999 (0.1% guideline for tolerance). Less than 50% of all data points satisfied the published tolerance of 0.1% for dose-rate dependence. Almost all data points (98.2%) satisfied the 0.1% criterion for leakage.Significance. For short-term stability (repeatability), it was found that the 0.1% guideline could not be met. Therefore, a less rigorous criterion of 0.25% is proposed. For dose linearity, our recommendation is to adopt a simple and clear methodology and to define an achievable tolerance based on the experimental data. For dose-rate dependence, a realistic criterion of 1% is proposed instead of the present 0.1%. Agreement was found with published guidelines for background signal (leakage).
Collapse
Affiliation(s)
- Božidar Casar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
| | - Ignasi Mendez
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Sonja Wegener
- University of Wuerzburg, Radiation Oncology, Wuerzburg, Germany
| | | | | | | | | | - Wojciech Bulski
- Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | | | | | - Andrew W Beavis
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Nicholas Harding
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Slaven Jurković
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Croatia
| | - Min-Sig Hwang
- University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, United States of America
| | - M Saiful Huq
- Department of Radiation Oncology, Division of Medical Physics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, United States of America
| |
Collapse
|
3
|
Breslin T, Paino J, Wegner M, Engels E, Fiedler S, Forrester H, Rennau H, Bustillo J, Cameron M, Häusermann D, Hall C, Krause D, Hildebrandt G, Lerch M, Schültke E. A Novel Anthropomorphic Phantom Composed of Tissue-Equivalent Materials for Use in Experimental Radiotherapy: Design, Dosimetry and Biological Pilot Study. Biomimetics (Basel) 2023; 8:230. [PMID: 37366825 DOI: 10.3390/biomimetics8020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
The production of anthropomorphic phantoms generated from tissue-equivalent materials is challenging but offers an excellent copy of the typical environment encountered in typical patients. High-quality dosimetry measurements and the correlation of the measured dose with the biological effects elicited by it are a prerequisite in preparation of clinical trials with novel radiotherapy approaches. We designed and produced a partial upper arm phantom from tissue-equivalent materials for use in experimental high-dose-rate radiotherapy. The phantom was compared to original patient data using density values and Hounsfield units obtained from CT scans. Dose simulations were conducted for broad-beam irradiation and microbeam radiotherapy (MRT) and compared to values measured in a synchrotron radiation experiment. Finally, we validated the phantom in a pilot experiment with human primary melanoma cells.
Collapse
Affiliation(s)
- Thomas Breslin
- Department of Oncology, Clinical Sciences, Lund University, 22185 Lund, Sweden
| | - Jason Paino
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | - Marie Wegner
- Institute of Product Development and Mechanical Engineering Design, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Elette Engels
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
- Australian Synchrotron/ANSTO, Clayton 3168, Australia
| | - Stefan Fiedler
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, 22607 Hamburg, Germany
| | - Helen Forrester
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne 3001, Australia
| | - Hannes Rennau
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - John Bustillo
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | | | | | | | - Dieter Krause
- Institute of Product Development and Mechanical Engineering Design, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Michael Lerch
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| |
Collapse
|
4
|
Verhaegen F, Butterworth KT, Chalmers AJ, Coppes RP, de Ruysscher D, Dobiasch S, Fenwick JD, Granton PV, Heijmans SHJ, Hill MA, Koumenis C, Lauber K, Marples B, Parodi K, Persoon LCGG, Staut N, Subiel A, Vaes RDW, van Hoof S, Verginadis IL, Wilkens JJ, Williams KJ, Wilson GD, Dubois LJ. Roadmap for precision preclinical x-ray radiation studies. Phys Med Biol 2023; 68:06RM01. [PMID: 36584393 DOI: 10.1088/1361-6560/acaf45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.
Collapse
Affiliation(s)
- Frank Verhaegen
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Karl T Butterworth
- Patrick G. Johnston, Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Anthony J Chalmers
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Rob P Coppes
- Departments of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Dirk de Ruysscher
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Department of Medical Physics, Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Germany
| | - John D Fenwick
- Department of Medical Physics & Biomedical Engineering University College LondonMalet Place Engineering Building, London WC1E 6BT, United Kingdom
| | | | | | - Mark A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Germany
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, NY, United States of America
| | - Katia Parodi
- German Cancer Consortium (DKTK), Partner site Munich, Germany
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. Munich, Germany
| | | | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Rianne D W Vaes
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Ioannis L Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jan J Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Physics Department, Technical University of Munich (TUM), Germany
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - George D Wilson
- Department of Radiation Oncology, Beaumont Health, MI, United States of America
- Henry Ford Health, Detroit, MI, United States of America
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Silvestre Patallo I, Subiel A, Carter R, Flynn S, Schettino G, Nisbet A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers (Basel) 2023; 15:987. [PMID: 36765943 PMCID: PMC9913621 DOI: 10.3390/cancers15030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Anna Subiel
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Rebecca Carter
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Samuel Flynn
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK
| | - Giuseppe Schettino
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, Mallet Place Engineering Building, London WC1E 6BT, UK
| |
Collapse
|