1
|
Heller R, Ellin J, Backfish M, Cates JW, Choong WS, Kratochwil N, Prebys E, Rebolo L, James SS, Ariño-Estrada G. Demonstration of LGADs and Cherenkov gamma detectors for prompt gamma timing proton therapy range verification. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2025; 9:508-514. [PMID: 40182235 PMCID: PMC11968073 DOI: 10.1109/trpms.2024.3494720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The great potential for precision dose delivery with proton therapy remains to be fully exploited, largely due to uncertainties in range that require additional conservative treatment margins. Analysis of time distributions from prompt gamma-ray emissions offers a means to precisely verify the range in real time and shrink treatment margins, thus increasing effectiveness and reducing toxicity. We demonstrate a prototype prompt gamma timing system to detect proton range shifts, based on Low Gain Avalanche Detectors, used to time incoming protons, and Cherenkov detectors, to time the outgoing prompt gammas. With this system, we are able to detect range shifts induced in a PMMA phantom with about 1 mm precision consistently.
Collapse
Affiliation(s)
- Ryan Heller
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Justin Ellin
- Department of Biomedical Engineering of the University of California, Davis (UCD), Davis, California, USA
| | | | - Joshua W Cates
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicolaus Kratochwil
- Department of Biomedical Engineering of the University of California, Davis (UCD), Davis, California, USA
| | - Eric Prebys
- Crocker Nuclear Laboratory of UCD
- Department of Physics of UCD
| | - Leonor Rebolo
- Department of Biomedical Engineering of the University of California, Davis (UCD), Davis, California, USA
| | - Sara St James
- University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Gerard Ariño-Estrada
- Department of Biomedical Engineering of the University of California, Davis (UCD), Davis, California, USA
- Institut de Física d'Altes Energies - Barcelona Institute of Science and Technology, Bellaterra (Barcelona), Spain
| |
Collapse
|
2
|
Ma Q, Mu D, Zhang R, Liu Z, Wan L, Liu Y, Qiu A, Yang Z, Xie Q. Development and evaluation of an in-beam PET system for proton therapy monitoring. Phys Med Biol 2025; 70:025019. [PMID: 39761626 DOI: 10.1088/1361-6560/ada681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/06/2025] [Indexed: 01/21/2025]
Abstract
Objective. In-beam positron emission tomography (PET) has important development prospects in real-time monitoring of proton therapy. However, in the beam-on operation, the high bursts of radiation events pose challenges to the performance of the PET system.Approach. In this study, we developed a dual-head in-beam PET system for proton therapy monitoring and evaluated its performance. The system has two PET detection heads, each with6×3Plug&Imaging (PnI) detection units. Each PnI unit consists of6×6lutetium-yttrium oxyorthosilicate crystal arrays. The size of each crystal strip is3.95×3.95×20 mm3, which is one-to-one coupled with a silicon photomultiplier. The overall size of the head is15.3×7.65 cm2.Main results. The in-beam PET system achieved a single count rate of 48 Mcps at the activity of 144.9 MBq, an absolute sensitivity of 2.717%, and a spatial resolution of approximately 2.6 mm (full width at half maximum) at the center of the field-of-view. When imaging a Derenzo phantom, the system could resolve rods with a diameter of 2.0 mm. Time-dynamic [18F]-Fluorodeoxyglucose mouse imaging was performed, demonstrating the metabolic processes in the mouse. This shows that the in-beam PET system has the potential for biology-guided proton therapy. The in-beam PET system was used to monitor the range of a 130 MeV proton beam irradiating a polymethyl methacrylate (PMMA) phantom, with a beam intensity of6.0×109p s-1and an irradiation duration of one minute. PET data were acquired only during the one-minute irradiation. We simulated the range shift by moving the PMMA and adding an air gap, showing that the error between the actual and the measured range is less than 1 mm.Significance. The results demonstrate that the system has a high count rate and the capability of range monitoring in beam-on operation, which is beneficial for achieving real-time range verification of proton beams in the future.
Collapse
Affiliation(s)
- Qiuhui Ma
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dengyun Mu
- The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ruilin Zhang
- The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zixiao Liu
- The School of Software Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lin Wan
- The School of Software Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yang Liu
- Wuhan National Laboratory for Optoelectronics, Wuhan, People's Republic of China
| | - Ao Qiu
- The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, People's Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qingguo Xie
- The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Wuhan, People's Republic of China
- The Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
3
|
Makarevich K, Schellhammer SM, Pausch G, Römer KE, Tiebel J, Turko J, Wagner A, Kögler T. Proton bunch monitors for the clinical translation of prompt gamma-ray timing. Phys Med Biol 2024; 69:225013. [PMID: 39530455 DOI: 10.1088/1361-6560/ad8c96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Objective. Prompt gamma-ray timing is an emerging technology in the field of particle therapy treatment verification. This system measures the arrival times of gamma rays produced in the patient body and uses the cyclotron radio frequency signal as time reference for the beam micro-bunches. Its translation into clinical practice is currently hindered by observed instabilities in the phase relation between the cyclotron radio frequency and the measured arrival time of prompt gamma rays. To counteract this, two proton bunch monitors are presented, integrated into the prompt gamma-ray timing workflow and evaluated.Approach. The two monitors are (a) a diamond detector placed at the beam energy degrader, and (b) a cyclotron monitor signal measuring the phase difference between dee current and voltage. First, the two proton bunch monitors as well as their mutual correlation were characterized. Then, a prompt gamma-ray timing measurement was performed aiming to quantify the present magnitude of the phase instabilities and to evaluate the ability of the proton bunch monitors to correct for these instabilities.Main results. It was found that the two new monitors showed a very high correlation for intermediate proton energies after the first second of irradiation, and that they were able to reduce fluctuations in the detected phase of prompt gamma rays. Furthermore, the amplitude of the phase instabilities had intrinsically decreased from about 700 ps to below 100 ps due to cyclotron upgrades.Significance. The uncertainty of the prompt gamma-ray timing method for proton treatment verification was reduced. For routine clinical application, challenges remain in accounting for detector load effects, temperature drifts and throughput limitations.
Collapse
Affiliation(s)
- Krystsina Makarevich
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Sonja M Schellhammer
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| | - Guntram Pausch
- Target Systemelektronik GmbH & Co. KG, Wuppertal, Germany
| | - Katja E Römer
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Jessica Tiebel
- TUD Dresden University of Technology, Institute of Nuclear and Particle Physics, Dresden, Germany
| | - Joseph Turko
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Andreas Wagner
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Toni Kögler
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| |
Collapse
|
4
|
Werner J, Pennazio F, Schmid N, Fiorina E, Bersani D, Cerello P, Kasprzak J, Mosco N, Ranjbar S, Sacchi R, Ferrero V, Rafecas M. Stopping power and range estimations in proton therapy based on prompt gamma timing: motion models and automated parameter optimization. Phys Med Biol 2024; 69:14NT02. [PMID: 38941994 DOI: 10.1088/1361-6560/ad5d4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Objective.Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation (PGT-SPE) may allow for reduction of safety margins in treatment planning.Approach.From Prompt-Gamma-Timing measurements, we reconstruct the spatiotemporal distribution of prompt gamma emissions, which is linked to the average motion of the primary particles. The stopping power is determined by fitting a model of the average particle motion. Here, we compare a previously published implementation of the particle motion model with an alternative formulation and present two formulations to automatically select the hyperparameters of our procedure. The performance was assessed using Monte-Carlo simulations of proton beams (60 MeV-219 MeV) impinging on a homogeneous PMMA phantom.Main results.The range was successfully determined within a standard deviation of 3 mm for proton beam energies from 70 MeV to 219 MeV. Stopping power estimates showed errors below 5% for beam energies above 160 MeV. At lower energies, the estimation performance degraded to unsatisfactory levels due to the short range of the protons. The new motion model improved the estimation performance by up to 5% for beam energies from 100 MeV to 150 MeV with mean errors ranging from 6% to 18%. The automated hyperparameter optimization matched the average error of previously reported manual selections, while significantly reducing the outliers.Significance.The data-driven hyperparameter optimization allowed for a reproducible and fast evaluation of our method. The updated motion model and evaluation at new beam energies bring us closer to applying PGT-SPE in more complex scenarios. Direct comparison of stopping power estimates between treatment planning and measurements during irradiation would offer a more direct verification than other secondary-particle-based techniques.
Collapse
Affiliation(s)
- Julius Werner
- Institute of Medical Engineering, Universität zu Lübeck, Lübeck, Germany
| | | | - Niklas Schmid
- Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
| | - Elisa Fiorina
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Davide Bersani
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
| | | | - Jona Kasprzak
- Institute of Medical Engineering, Universität zu Lübeck, Lübeck, Germany
| | - Nicola Mosco
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Sahar Ranjbar
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
| | - Roberto Sacchi
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
| | - Veronica Ferrero
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Magdalena Rafecas
- Institute of Medical Engineering, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Létang JM, Allegrini O, Testa É. Prompt-gamma track-length estimator with time tagging from proton tracking. Phys Med Biol 2024; 69:115052. [PMID: 38729180 DOI: 10.1088/1361-6560/ad4a01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
The design of prompt-gamma detectors necessitates numerous Monte Carlo simulations to precisely develop and optimize the detection stages in proton therapy. Alongside the advancement of MC simulations, various variance reduction methods have been explored to speed-up calculations. Among these techniques, track-length estimators are interesting scoring methods for achieving both speed and accuracy in Monte Carlo simulations of rare events. This paper introduces an extension of the GATE vpgTLE module that incorporates the prompt-gamma emission time, which is tagged from the proton tracking, enhancing its utility for studies focused on detector design and optimization that rely on time measurements. The results obtained from a clinical radiotherapy plan are presented. We demonstrate that the new vpgTLE tally with time tagging is accurate, except for certain prompt-gamma lines corresponding to long mean-life nuclei.
Collapse
Affiliation(s)
- Jean M Létang
- INSA-Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5220, Inserm U1294, Centre Léon Bérard, CREATIS, F-69373 Lyon, France
| | - Oreste Allegrini
- Universite Claude Bernard Lyon 1, CNRS/IN2P3 UMR5822, IP2I, F-69622 Villeurbanne, France
| | - Étienne Testa
- Universite Claude Bernard Lyon 1, CNRS/IN2P3 UMR5822, IP2I, F-69622 Villeurbanne, France
| |
Collapse
|
6
|
Yamamoto S, Watabe H, Nakanishi K, Yabe T, Yamaguchi M, Kawachi N, Kamada K, Yoshikawa A, Miyake M, Tanaka KS, Kataoka J. A triple-imaging-modality system for simultaneous measurements of prompt gamma photons, prompt x-rays, and induced positrons during proton beam irradiation. Phys Med Biol 2024; 69:055012. [PMID: 38385258 DOI: 10.1088/1361-6560/ad25c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Objective. Prompt gamma photon, prompt x-ray, and induced positron imaging are possible methods for observing a proton beam's shape from outside the subject. However, since these three types of images have not been measured simultaneously nor compared using the same subject, their advantages and disadvantages remain unknown for imaging beam shapes in therapy. To clarify these points, we developed a triple-imaging-modality system to simultaneously measure prompt gamma photons, prompt x-rays, and induced positrons during proton beam irradiation to a phantom.Approach. The developed triple-imaging-modality system consists of a gamma camera, an x-ray camera, and a dual-head positron emission tomography (PET) system. During 80 MeV proton beam irradiation to a polymethyl methacrylate (PMMA) phantom, imaging of prompt gamma photons was conducted by the developed gamma camera from one side of the phantom. Imaging of prompt x-rays was conducted by the developed x-ray camera from the other side. Induced positrons were measured by the developed dual-head PET system set on the upper and lower sides of the phantom.Main results. With the proposed triple-imaging-modality system, we could simultaneously image the prompt gamma photons and prompt x-rays during proton beam irradiation. Induced positron distributions could be measured after the irradiation by the PET system and the gamma camera. Among these imaging modalities, image quality was the best for the induced positrons measured by PET. The estimated ranges were actually similar to those imaged with prompt gamma photons, prompt x-rays and induced positrons measured by PET.Significance. The developed triple-imaging-modality system made possible to simultaneously measure the three different beam images. The system will contribute to increasing the data available for imaging in therapy and will contribute to better estimating the shapes or ranges of proton beam.
Collapse
Affiliation(s)
| | - Hiroshi Watabe
- Cyclotron and Radioisotope Center, Tohoku University, Japan
| | - Kohei Nakanishi
- Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Japan
| | - Takuya Yabe
- Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Japan
| | - Mitsutaka Yamaguchi
- Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Japan
| | - Naoki Kawachi
- Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Japan
| | - Kei Kamada
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Japan
| | - Akira Yoshikawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Japan
| | | | - Kazuo S Tanaka
- Faculty of Science and Engineering, Waseda University, Japan
| | - Jun Kataoka
- Faculty of Science and Engineering, Waseda University, Japan
| |
Collapse
|
7
|
Baran J, Borys D, Brzeziński K, Gajewski J, Silarski M, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopeć R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Perez Del Rio E, Raczyński L, Simbarashe M, Sharma S, Shivani, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień EŁ, Tayefi K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Ruciński A. Feasibility of the J-PET to monitor the range of therapeutic proton beams. Phys Med 2024; 118:103301. [PMID: 38290179 DOI: 10.1016/j.ejmp.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
PURPOSE The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.
Collapse
Affiliation(s)
- Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Damian Borys
- Silesian University of Technology, Department of Systems Biology and Engineering, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice, Poland; Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Karol Brzeziński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland; Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antony J Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Keegan McNamara
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Dominik Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Moyo Simbarashe
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Damien C Weber
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Radiation Oncology, University Hospital of Zürich, Zürich Switzerland; Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Carla Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| |
Collapse
|
8
|
Cuccagna C, Battistoni G, Bisogni MG, Cerello P, Del Guerra A, Ferrero V, Fiorina E, Morrocchi M, Pennazio F, Sacchi R, Amaldi U. Few-seconds range verification with short-lived positron emitters in carbon ion therapy. Phys Med 2024; 118:103209. [PMID: 38281410 DOI: 10.1016/j.ejmp.2024.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 11/28/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
In-beam PET (Positron Emission Tomography) is one of the most precise techniques for in-vivo range monitoring in hadron therapy. Our objective was to demonstrate the feasibility of a short irradiation run for range verification before a carbon-ion treatment. To do so a PMMA target was irradiated with a 220 MeV/u carbon-ion beam and annihilation coincidences from short-lived positron emitters were acquired after irradiations lasting 0.6 s. The experiments were performed at the synchrotron-based facility CNAO (Italian National Center of Oncological Hadrontherapy) by using the INSIDE in-beam PET detector. The results show that, with 3·107 carbon ions, the reconstructed positron emitting nuclei distribution is in good agreement with the predictions of a detailed FLUKA Monte Carlo study. Moreover, the radio-nuclei production is sufficiently abundant to determine the average ion beam range with a σ of 1 mm with a 6 s measurement of the activity distribution. Since the data were acquired when the beam was off, the proposed rapid calibration method can be applied to hadron beams extracted from accelerators with very different time structures.
Collapse
Affiliation(s)
- Caterina Cuccagna
- TERA Foundation, Novara, Italy; DPNC, Université de Genève, Geneva, Switzerland.
| | | | | | | | | | - Veronica Ferrero
- INFN sezione di Torino, Italy; Università degli Studi di Torino, Torino, Italy
| | | | | | | | - Roberto Sacchi
- INFN sezione di Torino, Italy; Università degli Studi di Torino, Torino, Italy
| | | |
Collapse
|
9
|
Monaco V, Ali OH, Bersani D, Abujami M, Boscardin M, Cartiglia N, Betta GFD, Data E, Donetti M, Ferrero M, Ficorella F, Giordanengo S, Villarreal OAM, Milian FM, Mohammadian-Behbahani MR, Olivares DM, Pullia M, Tommasino F, Verroi E, Vignati A, Cirio R, Sacchi R. Performance of LGAD strip detectors for particle counting of therapeutic proton beams. Phys Med Biol 2023; 68:235009. [PMID: 37827167 DOI: 10.1088/1361-6560/ad02d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Objective. The performance of silicon detectors with moderate internal gain, named low-gain avalanche diodes (LGADs), was studied to investigate their capability to discriminate and count single beam particles at high fluxes, in view of future applications for beam characterization and on-line beam monitoring in proton therapy.Approach. Dedicated LGAD detectors with an active thickness of 55μm and segmented in 2 mm2strips were characterized at two Italian proton-therapy facilities, CNAO in Pavia and the Proton Therapy Center of Trento, with proton beams provided by a synchrotron and a cyclotron, respectively. Signals from single beam particles were discriminated against a threshold and counted. The number of proton pulses for fixed energies and different particle fluxes was compared with the charge collected by a compact ionization chamber, to infer the input particle rates.Main results. The counting inefficiency due to the overlap of nearby signals was less than 1% up to particle rates in one strip of 1 MHz, corresponding to a mean fluence rate on the strip of about 5 × 107p/(cm2·s). Count-loss correction algorithms based on the logic combination of signals from two neighboring strips allow to extend the maximum counting rate by one order of magnitude. The same algorithms give additional information on the fine time structure of the beam.Significance. The direct counting of the number of beam protons with segmented silicon detectors allows to overcome some limitations of gas detectors typically employed for beam characterization and beam monitoring in particle therapy, providing faster response times, higher sensitivity, and independence of the counts from the particle energy.
Collapse
Affiliation(s)
- Vincenzo Monaco
- Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
| | - Omar Hammad Ali
- Fondazione Bruno Kessler, Center for Sensors & Devices , Trento, Italy
| | - Davide Bersani
- Istituto Nazionale di Fisica Nucleare, sezione di Pisa, Italy
| | - Mohammed Abujami
- Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
| | - Maurizio Boscardin
- Fondazione Bruno Kessler, Center for Sensors & Devices , Trento, Italy
- Trento Institute for Fundamental Physics and Applications, Povo, Trento, Italy
| | | | - Gian Franco Dalla Betta
- Trento Institute for Fundamental Physics and Applications, Povo, Trento, Italy
- Università degli Studi di Trento, Trento, Italy
| | - Emanuele Data
- Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
| | - Marco Donetti
- CNAO, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Marco Ferrero
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
| | | | | | | | - Felix Mas Milian
- Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
- Universidade Estadual de Santa Cruz, Department of Exact and Technological Sciences, Ilhéus, Brazil
| | | | - Diango Montalvan Olivares
- Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
| | - Marco Pullia
- CNAO, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, Povo, Trento, Italy
- Università degli Studi di Trento, Trento, Italy
| | - Enrico Verroi
- Trento Institute for Fundamental Physics and Applications, Povo, Trento, Italy
| | - Anna Vignati
- Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
| | - Roberto Cirio
- Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
| | - Roberto Sacchi
- Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Italy
| |
Collapse
|
10
|
Jacquet M, Ansari S, Gallin-Martel ML, André A, Boursier Y, Dupont M, Es-smimih J, Gallin-Martel L, Hérault J, Hoarau C, Hofverberg JP, Maneval D, Morel C, Muraz JF, Salicis F, Marcatili S. A high sensitivity Cherenkov detector for prompt gamma timing and time imaging. Sci Rep 2023; 13:3609. [PMID: 36869125 PMCID: PMC9984540 DOI: 10.1038/s41598-023-30712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
We recently proposed a new approach for the real-time monitoring of particle therapy treatments with the goal of achieving high sensitivities on the particle range measurement already at limited counting statistics. This method extends the Prompt Gamma (PG) timing technique to obtain the PG vertex distribution from the exclusive measurement of particle Time-Of-Flight (TOF). It was previously shown, through Monte Carlo simulation, that an original data reconstruction algorithm (Prompt Gamma Time Imaging) allows to combine the response of multiple detectors placed around the target. The sensitivity of this technique depends on both the system time resolution and the beam intensity. At reduced intensities (Single Proton Regime-SPR), a millimetric proton range sensitivity can be achieved, provided the overall PG plus proton TOF can be measured with a 235 ps (FWHM) time resolution. At nominal beam intensities, a sensitivity of a few mm can still be obtained by increasing the number of incident protons included in the monitoring procedure. In this work we focus on the experimental feasibility of PGTI in SPR through the development of a multi-channel, Cherenkov-based PG detector with a targeted time resolution of 235 ps (FWHM): the TOF Imaging ARrAy (TIARA). Since PG emission is a rare phenomenon, TIARA design is led by the concomitant optimisation of its detection efficiency and Signal to Noise Ratio (SNR). The PG module that we developed is composed of a small PbF[Formula: see text] crystal coupled to a silicon photoMultiplier to provide the time stamp of the PG. This module is currently read in time coincidence with a diamond-based beam monitor placed upstream the target/patient to measure the proton time of arrival. TIARA will be eventually composed of 30 identical modules uniformly arranged around the target. The absence of a collimation system and the use of Cherenkov radiators are both crucial to increase the detection efficiency and the SNR, respectively. A first prototype of the TIARA block detector was tested with 63 MeV protons delivered from a cyclotron: a time resolution of 276 ps (FWHM) was obtained, resulting in a proton range sensitivity of 4 mm at 2[Formula: see text] with the acquisition of only 600 PGs. A second prototype was also evaluated with 148 MeV protons delivered from a synchro-cyclotron obtaining a time resolution below 167 ps (FWHM) for the gamma detector. Moreover, using two identical PG modules, it was shown that a uniform sensitivity on the PG profiles would be achievable by combining the response of gamma detectors uniformly distributed around the target. This work provides the experimental proof-of-concept for the development of a high sensitivity detector that can be used to monitor particle therapy treatments and potentially act in real-time if the irradiation does not comply to treatment plan.
Collapse
Affiliation(s)
- Maxime Jacquet
- grid.5676.20000000417654326Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - Saba Ansari
- grid.5676.20000000417654326Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - Marie-Laure Gallin-Martel
- grid.5676.20000000417654326Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - Adélie André
- grid.5676.20000000417654326Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - Yannick Boursier
- grid.470046.10000 0004 0452 0652Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
| | - Mathieu Dupont
- grid.470046.10000 0004 0452 0652Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
| | - Jilali Es-smimih
- Ion beam application SA, 3, chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium
| | - Laurent Gallin-Martel
- grid.5676.20000000417654326Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - Joël Hérault
- grid.417812.90000 0004 0639 1794Centre Antoine Lacassagne, 06200 Nice, France
| | - Christophe Hoarau
- grid.5676.20000000417654326Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | | | - Daniel Maneval
- grid.417812.90000 0004 0639 1794Centre Antoine Lacassagne, 06200 Nice, France
| | - Christian Morel
- grid.470046.10000 0004 0452 0652Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
| | - Jean-François Muraz
- grid.5676.20000000417654326Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - Fabrice Salicis
- Ion beam application SA, 3, chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium
| | - Sara Marcatili
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000, Grenoble, France.
| |
Collapse
|
11
|
de Ridder M, Raaijmakers CPJ, Pameijer FA, de Bree R, Reinders FCJ, Doornaert PAH, Terhaard CHJ, Philippens MEP. Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer. Cancers (Basel) 2022; 14:3027. [PMID: 35740691 PMCID: PMC9220977 DOI: 10.3390/cancers14123027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, MRI-guided radiotherapy (MRgRT) has taken an increasingly important position in image-guided radiotherapy (IGRT). Magnetic resonance imaging (MRI) offers superior soft tissue contrast in anatomical imaging compared to computed tomography (CT), but also provides functional and dynamic information with selected sequences. Due to these benefits, in current clinical practice, MRI is already used for target delineation and response assessment in patients with head and neck squamous cell carcinoma (HNSCC). Because of the close proximity of target areas and radiosensitive organs at risk (OARs) during HNSCC treatment, MRgRT could provide a more accurate treatment in which OARs receive less radiation dose. With the introduction of several new radiotherapy techniques (i.e., adaptive MRgRT, proton therapy, adaptive cone beam computed tomography (CBCT) RT, (daily) adaptive radiotherapy ensures radiation dose is accurately delivered to the target areas. With the integration of a daily adaptive workflow, interfraction changes have become visible, which allows regular and fast adaptation of target areas. In proton therapy, adaptation is even more important in order to obtain high quality dosimetry, due to its susceptibility for density differences in relation to the range uncertainty of the protons. The question is which adaptations during radiotherapy treatment are oncology safe and at the same time provide better sparing of OARs. For an optimal use of all these new tools there is an urgent need for an update of the target definitions in case of adaptive treatment for HNSCC. This review will provide current state of evidence regarding adaptive target definition using MR during radiotherapy for HNSCC. Additionally, future perspectives for adaptive MR-guided radiotherapy will be discussed.
Collapse
Affiliation(s)
- Mischa de Ridder
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Cornelis P. J. Raaijmakers
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Frank A. Pameijer
- Department of Radiology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Floris C. J. Reinders
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Patricia A. H. Doornaert
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Chris H. J. Terhaard
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Marielle E. P. Philippens
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| |
Collapse
|